Phytoremediation of Industrial Waste Leachates by Planted Filters Composed of Phragmites australis (Cav) Trin ex Steud, Typha latifolia L. and Cyperus papyrus L.

Main Article Content

K. M. Mbemba
A. C. Kayath
A. B. Madiélé Mabika
G. R. Dielé Mouko
J. M. Ouamba

Abstract

The aim of this study is to evaluate the purifying ability of 3 parallel planted filters (PF1, PF2 and PF3) composed of three plants (Phragmites australis (Cav) Trin ex Steud, Typha latifolia L., Cyperus papyrus L.) on leachates from a landfill of industrial waste in Pointe-Noire (Republic of Congo). This landfill site includes a technical landfill for ordinary industrial waste (OIW) and a technical landfill for hazardous and soiled industrial waste (SIW). In order to assess purifying ability, we sampled 14 samples over 8 weeks, with 7 samples of the raw leachates from the technical landfill center, and 7 samples of leachates cleaned after passing through the tryptic vegetable filter. The physico-chemical analyzes made it possible to determine the following parameters: TOC, COD, NO3-,PO42-, Ni, Cd, CrVI, Zn, Cu and Pb. The results showed a significant decrease in organic pollution with abatement rates in TOC and COD greater than 90%. The average removal efficiency is respectively 45.97% for nitrates and 40.2% for phosphates. The abatement rates for heavy metals range from 41.2% to 60.9% for nickel, from 52.2% to 68.5 % for cadmium, from 49% to 71.7% for chromium VI, from 59% to 74.6% for zinc, from 50.9 % to 65 % for copper and from 61.4% to 75.1% for lead. However, additional analyzes are needed to confirm the hypperaccumulator nature of these plant filters in particular absorption isotherms and kinetics of extraction of heavy metals of Phragmites australis (Cav) Trin ex Steud, Typha latifolia L., Cyperus papyrus L.)

Keywords:
Cyperus papyrus, plant filters, Phragmites australis, removal efficiency, Typha latifolia

Article Details

How to Cite
Mbemba, K. M., Kayath, A. C., Mabika, A. B. M., Mouko, G. R. D., & Ouamba, J. M. (2019). Phytoremediation of Industrial Waste Leachates by Planted Filters Composed of Phragmites australis (Cav) Trin ex Steud, Typha latifolia L. and Cyperus papyrus L. International Journal of Environment and Climate Change, 9(9), 522-534. https://doi.org/10.9734/ijecc/2019/v9i930137
Section
Original Research Article

References

ONU Environement. Freshwater strategy 2017-2021. United Nations Environment Program, Nairobi, Kenya; 2017.

Boutin C, Héduit A, Helmet JM, et al. Final report on wastewater treatment technologies for reuse of treated wastewater (REUT). ONEMA-CEMAGREF Partnership agreement; 2008.

Wenclawlak B, Pangou SV. Environmental audit of the Congolese coast: Case of the coast of the city of Pointe-Noire. Association for the Protection of the Environment of the Gulf of Guinea. 2005;1-6.

Mench M, Schwitzguébel JP. Plant biotechnology: The green thumb to diagnose and sanitize wastewater, contaminated sites and soils. 4th WG2 workshop-risk assesment and suistable land management using plants in trace element-contamined soils, Bordeaux; 2013. France.

Origo N, Wicherek S, Hotyat M. Rehabilitation of polluted sites by phytoremediation. The Electronic Journal of Environmental Sciences. 2012;12(2).

Azadeh V, Ebrahim P, Masoud HMB. Phytoremediation, a method for treatment of petroleum hydrocarbon contaminated soils. Intl. J. Farm. Alli. Sci. 2013;2(21): 909-913.

Fatima K, Imran A, Amin I, Khan IM, Afzal M. Plant species affect colonization patterns and metabolic activity of associated endophytes during phytoremediation of crude oil- contaminated soil. Environ. Sci. Pollut. Res. Int. 2016;23(7):6188-6196.

Daverey A, Pakshirajan K. Pretreatement of synthetic dairy wastewater using the sophorolipid producing yeast candida bombicola. Appl. Biochem. Biotechnol. 2011;163:720.

Grijalbo Fernández L, Fernández-Pascual M, Gutiérrez Mañero FJ, Lucas García JA. Phytoremediation of contaminated waters to improve water quality. In: Ansari A, Gill S, Gill R, Lanza G, Newman L (eds). Phytoremediation. Springer, Cham; 2015.

Klink A. A comparison of trace metal bioaccumulation and distribution in Typha latifolia and Phragmites australis: implication of phytoremediation. Environmental Science and Pollution Research. 2017;24(4):3843-3852.

Wang L, Bin J, Yuehua H, Runqing L, Wei S. A review on in situ phytoremediation of mine tailings. Chemosphere. 2017;184:594-600.

Vhahangwele M, Khathutshelo LM. Environmental contamination by heavy metals, heavy metals. Hosam El-Din M. Saleh, Refaat F. Aglan, Intech Open; 2018.
DOI:10.5772/intechopen.76082.

Schierano MC, Panigatti MC, Maine MA. Horizontal subsurface flow constructed wetlands for tertiary treatment of dairy wastewater. International Journal of Phytoremediation. 2018;20(9):895-900.

Mesnoua M, Mateos-Naranjo E, Alberto Pérez-Romero J, Barcia-Piedras JM, Lotmani B, Redondo-Gómez S. Combined effect of Cr-toxicity and temperature rise on physiological and biochemical responses of Atriplex halimus L. Plant Physiology and Biochemistry, 2018; 132.
DOI:10.1016/j.plaphy.2018.08.025

Morel JL, Bitton G, Schwartz C, Schiavon M. Report for the OECD Ecotoxicology: responses, biomarkers and risk assessment; 1997.

Arslan M, Imran A, Khan QM, Afzal M. Plant-bacteria partnerships for the remediation of persistent organic pollutants. Environmental Science and Pollution Research. 2017;4(5):4322-4336.

Abibsi N. Re-use of purified waste water by plant filters (phytopurification) for the irrigation of green spaces: Application to a district of the city of Biskra. Memory of Mohamed Khider University. Algérie; 2011.

Séghairi N, Mimeche L, Débabeche M, Nouioua A, Mouada H. Elimination of phenol by two aquatic plants Typha latifolia and Arundo donax. 4th International congress water, waste & environment, Agadir, Morocco; 2013.

Laatra M, Chenini H. Comparative study between two plants; 2013.

Merghem KA, El Halouani H, Alnedhary AA, Dssouli K, Gharibi E, Alansi RQ, Al- Nahmi F. Imact of raw and treated wastewater on quality surface water of Wadi Bani Houat (Sanaa basin) Study spatial-temporal. J. Mater. Environ. Sci, 2016;7(5):1516-1530.

Belghyti D, El Guamri Y, Ztit G, Ouahidi ML, Joti MB, Harchrass A, Amghar H, Bouchouata O, El Kharrim K, Bounouira H. Physicochemical characterization of slaughterhouse wastewater in order to implement adequate treatment: Case of Kenitra in Morocco. Afrique Science. 2009;05(2):199-216.
[ISSN 1813-548X]

Bensmina-Mimeche L, Debabeche M, Mancer H. Analysis of the purifying power of an implanted filter of Phragmites australis for the treatment of wastewater under semicircular conditions - Biskra Region, Journal International Environmental Conflict Management, Santa Catarina – Brazil. 20101;(1):10-15.

Daniels R. Enter the root-zone: Green technology for the leather manufacturer, part 1, World Leather. 2001;14(4):63–67.

Tiglyene S, Mandi L, Jaouad AE. Removal of chromium by vertical infiltration on beds of Phragmites australis (Cav), Rev. Sci. Eau. 2005;177-198.

Vymazal J. Horizontal sub-surface flow and hybrid constructed wetlands systems for wastewater treatment. Ecol. Eng. 2005; 25:478–490.

Elfanssi S, Ouazzani N, Latrach L, Hejjaj A, Mandi L. Phytoremediation of domestic wastewater usinf a hybrid constructed wetland in mountainous rural area. International Journal of Phytoremediation. 2018;20(1):75-87.

García P, Aguirre J, Barragán R, Mujeriego V, Matamoros, Bayona JM. Effect of key design parameters on the efficiency of horizontal subsurface flow constructed wetlands, Ecol. Eng. 2005;25: 405–418.

Kucuk OS, Sengul F, Kapdan IK. Removal of ammoniam from tannery effluents in a reed bed constructed wetland, Water Sci. Technol. 2003;48(11–12):179–186.

Kumari M, Tripathi BD. Efficiency of Phragmites australis and Typha latifolia for heavy metal removal from wastewater. Ecotoxicology and Environmental Safety. 2015;112:80-86.

Klink A, Maciol A, Wistocka M, Krawczyk J. Metal accumulation and distribution in the organs of Typha latifolia L. (cattail) and their potential use in bioindication. Limnologica. 2013;4(3):164-168.

Fonkou T, Agendia P, Kengne I, Akoa A, Derek F, Nya J, Dongmo F. Heavy metal concentrations in some biotic and abiotic components of the olezoa wtland complex (Yaoundé-Cameroun, West Africa). Water. Qual. Res. J. 2005;40(4): 457-461.

Aksoy A, Duman F, Sezen G. Heavy metal accumulation and distribution in narrow-leaved cattail (Typha augustifolia) and common reed (Phragmites australis). Journal of Freshwater Ecology. 2005;20 (4):783-785.

Sasmaz A, Obek E, Hasar H. The accumulation of heavy metals in Typha latifolia L. grown in a stream carrying secondary effluent. Ecology Engineering. 2008;3(3-4):278-284.

Akeem O, Bello-Bassam O, Tawabini Amjad S, Khalil CB, Boland Tawfik R, Saleh A. Phytoremediation of cadmium, lead and nickel-contaminated water by Phragmites australis in hydroponic systems. Ecological Engineering. 2018; 120:126-133.

Hocking PJ, Pate JS. Mobilization of minerals to developing seeds of legumes. Ann. Bot. 1977;41:1259-1278.

Cadenas E. Biochemistry of oxygen toxicity. Annu. Rev. Biochem. 1989;58:79-110.

Halliwell B, Gutteridge JMC. Role of free radicals and catalytic metal ions in human disease: an overview. Methods Enzymol. 1990;186:1-85.

Repellini F. Phytoremediation of soils polluted by metals. Memory of the University Sciences and Techniques of Saint-Etienne, France; 2000.

Bounkala F, Meddahi Z. The effect of salt (Nacl) and metallic (lead) stress on some biochemical parameters of Atriplex halimus L. Memory of the University of Mostaganem, Algérie; 2016.

Hellings SE, Gallagher JL. The effects of salinity and flooding in phragmites australis. Journal of Applied Ecology. 1992;29(1):41-49.

Almuktar SA, Abed SN, Scholz M. Wetlands for wastewater treatment and subsequent recycling of treated effluent: A review. Environmental Science and Pollution Research. 2018;25(24):23595-23623.