Non Bio-degradable Plastic Eating Bacteria: A Review
Sudipta Chakraborty
BCDA College of Pharmacy and Technology, 78/1, Jessore Road (S), Hridaypur, Barasat, Kolkata-700127, India.
Dipanjana Ash *
BCDA College of Pharmacy and Technology, 78/1, Jessore Road (S), Hridaypur, Barasat, Kolkata-700127, India.
Arna Pal
BCDA College of Pharmacy and Technology, 78/1, Jessore Road (S), Hridaypur, Barasat, Kolkata-700127, India.
Sohini Sen
BCDA College of Pharmacy and Technology, 78/1, Jessore Road (S), Hridaypur, Barasat, Kolkata-700127, India.
Nipendranath Bala
BCDA College of Pharmacy and Technology, 78/1, Jessore Road (S), Hridaypur, Barasat, Kolkata-700127, India.
*Author to whom correspondence should be addressed.
Abstract
In the 21st century, synthetic plastics are a fundamental part of the global economy and the utilization of non-bio-degradable petrochemical plastics such as polyvinyl chloride, polyethylene, polypropylene, polystyrene, and polyethylene terephthalate has increased (80%) worldwide in the last five decades since invention. Conventional petro-chemical plastics either splinter via abiotic factors or segregate and absorb biotic factors during the bio-degradation process however, non-biodegradable petrochemical plastics are resistant to degradation via carrying poisonous excipients. Therefore, the degradation process of non-bio-degradable plastics relies on micro-organisms such as Ideonella sakaiensis 201-F6, Phormidium, Lewinella, Bacillus megaterium, Rhodococcusruber, Serratiamarcescens, Enterobacterasburiae YT1, and Bacillus sp. YP1 as advanced recycling operations only covers approximately 10% of petro-chemical plastic waste. The purpose of this review is to emphasize the source, and mechanism of different micro-organisms capable to decompose petrochemical plastics.
Keywords: Enterobacterasburiae YT1, Ideonella sakaiensis, non-bio-degradable plastics, polyethylene, polyethylene terephthalate
How to Cite
Downloads
References
Geyer R, Jambeck J, Law KL. Production, use, and fate of all plastics ever made. Sci. Adv. 2017;3(7):5.
Ellen Mac Arthur Foundation. The new plastics economy: Rethinking the future of plastics; 2016.
Available:https://ellenmacarthurfoundation.org/the-new-plastics-economy-rethinking-the-future-of-plastics
Plastics Europe. Plastics-the Facts 2015. An analysis of European plastics production, demand and waste data; 2015.
Available:https://plasticseurope.org/de/wp-content/uploads/sites/3/2021/11/2015-Plastics-the-facts.pdf
Plastics Europe. Plastics-the Facts 2017 An analysis of European plastics production, demand and waste data; 2017.
Available:https://plasticseurope.org/wp-content/uploads/2021/10/2017-Plastics-the-facts.pdf
Skoczinski P, Krause L, Raschka A, Dammer L, Carus M. Current status and future development of plastics: Solutions for a circular economy and limitations of environmental degradation. Meth Enzymol. 2021;648:1-26.
Wilkes RA, Aristilde L. Degradation and metabolism of synthetic plastics and associated products by Pseudomonas sp.: Capabilities and challenges. J Appl Microbiol. 2017;123(3):582-93.
Urbanek AK, Rymowicz W, Strzelecki MC, Kociuba W, Franczak L, Mironczuk AM. Isolation and characterization of Arctic microorganisms decomposing bio-plastics. AMB Express. 2017;7(1):10.
Thompson RC, Moore CJ, Vom Saal FS, Swan SH. Plastics, the environment and human health: Current consensus and future trends. Phi Trans R Soc B. 2009; 364:2153-66.
Eriksen M, Lebreton LC, Carson HS, Thiel M, Moore CJ, Borerro JC et al., Plastic pollution in the world’s oceans: More than 5 trillion plastic pieces weighing over 250,000 tons afloat at sea. PLoS One. 2014;9(12):15.
Gu JD. Microbial colonization of polymeric materials for space applications and mechanisms of bio-deterioration: A review. Int Biodeter Biodegr. 2007;59:170-79.
Sivan A, Szanto M, Pavlov V. Biofilm development of the polyethylene-degrading bacterium Rhodococcus ruber. Appl Microbiol Biotechnol. 2006;72:346-52.
Chen Z, Zhao W, Xing R, Xie S, Yang X, Cui P et al., Enhanced in situ biodegradation of micro-plastics In sewage sludge using hyper thermophilic composting technology. J Hazard Mater. 2019;384(1):32.
Wang WH, Huang CW, Tsou EY, Ao-Ieong WS, Hsu HC, Wong DSH et al., Characterization of degradation behavior of poly (glycerol maleate) films in various aqueous environments. Polym Degrad Stab. 2021;183:8.
Li J, Kim HR, Lee HM, Yu HC, Jeon E, Lee S et al. Rapid biodegradation of polyphenylene sulfide plastic beads by Pseudomonas sp. Sci Total Environ. 2020; 720:8.
Peixoto J, Silva LP, Krüger RH. Brazilian cerrado soil reveals an untapped microbial potential for unpretreated polyethylene biodegradation. J Hazard. Mater. 2017; 324:634-44.
Novotný C, Malachová K, Adamus G, Kwiecien M, Lotti N, Soccio M et al., Deterioration of irradiation/high-temperature pretreated, linear low-density polyethylene (LLDPE) by Bacillus amyloliquefaciens. Int Biodeter Biodegr 2018;132:259-67.
Zhang J, Gao D, Li Q, Zhao Y, Li L, Lin H et al., Biodegradation of polyethylene microplastic particles by the fungus Aspergillus flavus from the guts of wax moth Galleria mellonnella. Sci Total Environ. 2019;704:29.
Restrepo-Flórez JM, Bassi A, Thompson MR. Microbial degradation and deterioration of polyethylene-a review. Int Biodeter Biodegr. 2014;88:83-90.
Yuan J, Ma J, Sun Y, Zhou T, Zhao Y, Yu F. Microbial degradation and other environmental aspects of micro-plastics/plastics. Sci Total Environ. 2020; 715:9.
Lilja EE, Johnson DR. Metabolite toxicity determines the pace of molecular evolution within microbial populations. BMC Evol Biol. 2017;17(1):12.
Pinhal S, Ropers D, Geiselmann J, Jong H. Acetate metabolism and the inhibition of bacterial growth by acetate. J Bacteriol. 2019;201:1-19.
Yoshida S, Hiraga K, Taniguchi I, Od K. Ideonella sakaiensis, PETase, and MHETase: From identification of microbial PET degradation to enzyme characterization. Met Enzymol. 2021;648: 187-203
Yoshida S, Hiraga K, Takehana T, Taniguchi I, Yamaji H, Maeda Y, et al., A bacterium that degrades and assimilates poly (ethylene terephthalate). Science. 2016;351:1196-9.
Bornscheuer UT. Feeding on plastic. Science. 2016;351:1154-5.
Liu B, He L, Wang L, Li T, Li C, Liu H et al., Protein crystallography and site-direct mutagenesis analysis of the poly (ethylene terephthalate) hydrolase PETase from Ideonella sakaiensis. Chem Bio Chem. 2018;19(14):1471-5.
Austin HP, Allen MD, Donohoe BS, Rorrer NA, Kearns FL, Silveira RL, Pollard BC, et al., Characterization and engineering of a plastic degrading aromatic polyesterase. Proc Natl Acad Sci. 2018; 115:8.
Fecker T, Galaz-Davison P, Engelberger F, Narui Y, Sotomayor M, Parra LP et al., Active site flexibility as a hallmark for efficient PET degradation by I. sakaiensis PETase. Biophys J. 2018;114:1302-12.
Joo S, Cho IJ, Seo H, Son HF, Sagong HY, Shin TJ et al., Structural insight into molecular mechanism of poly (ethylene terephthalate) degradation. Nat Commun 2018;9:12.
Han X, Liu W, Huang JW, Ma J, Zheng Y, Ko TP et al., Structural insight into catalytic mechanism of PET hydrolase. Nat Commun. 2017;8:6.
Yang J, Yang Y, Wei-Min W, Zhao J, Jiang L. Evidence of polyethylene biodegradation by bacterial strains from the guts of plastic-eating waxworms. Environ Sci Tech. 2014; 48:13776-84.
Oberbeckmann S, Osborn AM, Duhaime MB. Microbes on a bottle: Substrate, season and geography influence community composition of microbes colonizing marine plastic debris. PLoS One. 2016;11(8):24.
Harrison P, Sapp M, Schratzberger M, Osborn AM. Interactions between microorganisms and marine microplastics: A call for research. Mar Technol Soc J. 2011;45(2):12-20.
Oberbeckmann S, Loeder MG, Gerdts G, Osborn AM.) Spatial and seasonal variation in diversity and structure of microbial biofilms on marine plastics in northern european waters. FEMS Microbiol Ecol. 2014;90(2):478-92.
De Tender CA, Devriese LI, Haegeman A, Maes S, Ruttink T, Dawyndt P. Bacterial community profiling of plastic litter in the Belgian part of the North Sea. Environ Sci Technol. 2015;49(16):9629-38.
Jabloune R, Khalil M, Moussa IEB, Simao-Beaunoir AM, Lerat S, Brzezinski R et al., Enzymatic degradation of p-nitrophenyl esters, polyethylene terephthalate, cutin, and suberin by Sub1, a suberinase encoded by the plant pathogen Streptomyces scabies. Microbes Environ. 2020;35(1):7.
Arefian M, Tahmourespour A, Zia M. Polycarbonate biodegradation by newly isolated Bacillus strains. Arch Environ Prot. 2020;46:14-20.
Ho BT, Roberts TK, Lucas S. An overview on biodegradation of polystyrene and modified polystyrene: The microbial approach. Crit Rev Biotechnol. 2018; 38:308-20.
Osman M, Satti SM, Luqman A, Hasan F, Shah Z, Shah AA. Degradation of polyester polyurethane by Aspergillus sp. strain S45 isolated from soil. J Polym Environ. 2018;26:301-10.
Zettler ER, Mincer TJ, Amaral-Zettler LA. Life in the “plastisphere”: microbial communities on plastic marine debris. Environ Sci Technol. 2013;47(13):7137- 46.
Usman MA, Momohjimoh I, Usman AO. Mechanical, physical and biodegradability performances of treated and untreated groundnut shell powder recycled polypropylene composites. Mater Res Express. 2020;7(3):15.
Singh MJ, Sedhuraman P. Biosurfactant, polythene, plastic, and diesel biodegradation activity endophytic Nocardiopsis sp. mrinalini9 isolated from Hibiscus rosasinensis leaves. Bioresour Bioprocess. 2015;2:7.
Bombelli P, Howe CJ, Bertocchini F. Polyethylene bio-degradation by caterpillars of the wax moth Galleria mellonella. Curr Biol. 2017;27(8):292-3.
Dux E. Plastic-eating bacteria. . Chem Rev. 2017:22.