Impact of Agrochemicals on Soil Biota and Ways to Mitigate it: A Review

Suwa Lal Yadav

Department of Soil Science and Agricultural Chemistry, Anand Agricultural University, Anand, Gujarat-388 110, India.

Devilal Birla *

Department of Agronomy, Anand Agricultural University, Anand, Gujarat-388 110, India.

Devendra Kumar Inwati

Department of Soil Science, Jawahar Lal Nehru Krishi Vishwa Vidyalaya, Jabalpur, Madhya Prades-482 004, India.

Manish Yadav

Department of Soil Science, Punjab Agricultural University, Ludhiana, Punjab-141 004, India.

Indra Raj Yadav

Department of Soil Science and Agricultural Chemistry, Rajmata Vijayaraje Scindia Krishi Vishwa Vidyalaya, Gwalior, Madhya Pradesh-404 702, India.

Sanjay N. Makwana

Department of Agronomy, Anand Agricultural University, Anand, Gujarat-388 110, India.


Department of Agronomy, Chandrashekhar Azad University of Agriculture and Technology, Kanpur, Uttar Pradesh-208002, India.

Neeraj Papnai

Department of Agronomy, Anand Agricultural University, Anand, Gujarat-388 110, India.

*Author to whom correspondence should be addressed.


Agricultural production is largely based on the use of agrochemicals in order to minimize pests, pathogens, and undesirable weeds toward increase production. In the current situation, however, several threats are emerging that threaten food security, human and environmental health, ecological balance, and soil biodiversity. Agrochemicals may shift beneficial microorganisms in the community over time, with potentially dangerous consequences, such as the development of antibiotic resistance. Farming systems utilizing agrochemicals might adversely affect soil microorganisms responsible for nutrient cycling processes, such as: nitrogen fixation, phosphorus solubilizing, and others. Some agrochemicals reduce soil enzyme activity and biochemical reactions, which are key indicators of soil microbiology. In this review, we explore how applied agrochemicals affect soil microbes and biochemical health attributes under different cropping systems, as well as ways to overcome the negative impacts of agrochemicals.

Keywords: Agrochemicals, soil microbes, environmental health, biotransformation, new generation pesticides

How to Cite

Yadav, S. L., Birla, D., Inwati, D. K., Yadav , M., Yadav, I. R., Makwana, S. N., Lakshman, & Papnai , N. (2023). Impact of Agrochemicals on Soil Biota and Ways to Mitigate it: A Review. International Journal of Environment and Climate Change, 13(5), 366–375.


Download data is not yet available.


Yáñ ez L, Ortiz D, Calderón J, Batres L, Carrizales L, Mejía J, et al. Overview of human health and chemical mixtures: Problems facing developing countries. Environmental Health Perspectives. 2002; 110(suppl 6):901-909.

Kenaga EE, Morgan RW. Dictionaries, Catalogs, and. Guide to Sources for Agricultural and Biological Research. 2021;46:238.

FAOSTAT F. New food balances. FAOSTAT. Available via FAO; 2020. Accessed. 2021;Jan 25.

Meena H, Meena RS, Rajput BS, Kumar S. Response of bio-regulators to morphology and yield of clusterbean [Cyamopsis tetragonoloba (L.) Taub.] under different sowing environments. Journal of Applied and Natural Science. 2016;8(2):715-718.

Hussain S, Siddique T, Saleem M, Arshad M, Khalid A. Impact of pesticides on soil microbial diversity, enzymes and biochemical reactions. Advances in Agronomy. 2009;102:159-200.

Muñoz-Leoz B, Garbisu C, Charcosset JY, Sánchez-Pérez JM, Antigüedad I, Ruiz-Romera E. Non-target effects of three formulated pesticides on microbially-mediated processes in a clay-loam soil. Science of the Total Environment. 2013; 449:345-354.

Miller GT. Sustaining the Earth; Brooks/Cole: Monterey County, CA, USA; 2004.

ISBN 9780534400880.

Harris CR, Sans WW. Vertical distribution of residues of organp. chlorine insecticides in soils collected from six farms in southwestern Ontario. Pesiic. Progr.. 1970;8(1):1-9.

Cycoń M, Piotrowska-Seget Z, Kozdrój J. Responses of indigenous microorganisms to a fungicidal mixture of mancozeb and dimethomorph added to sandy soils. International Biodeterioration & Biodegradation. 2010;64(4):316-323.

Subhani A, El-ghamry AM, Changyong H, Jianming X. Effects of pesticides (herbicides) on soil microbial biomass-a review. Pakistan Journal of Biological Sciences. 2000;3(5):705-709.

Meena RS, Meena VS, Meena SK, Verma JP. The needs of healthy soils for a healthy world. Journal of Cleaner Production. 2015;102:560–561.

Govedarica M, Miloševiã N, Konstantinoviã B. Uticaj dimetenamida i metalahlora na mikrobiološka svojstva zemljišta pod šeãernom repom. V Jugosl. Savetov. O Zašt. Bilja Zlatibor. 2001;12:3-8.

Ecobichon DJ. Toxic effects of pesticides in casarett and doull's toxicology. The Basic Science of Poisons. 4th edition. New York: Pergamon Press. 1991;2–18.

DeLorenzo ME, Scott GI, Ross PE. Toxicity of pesticides to aquatic microorganisms: a review. Environmental Toxicology and Chemistry: An International Journal. 2001;20(1):84-98.

Engelen B, Meinken K, Von Wintzingerode F, Heuer H, Malkomes HP, Backhaus H. Monitoring impact of a pesticide treatment on bacterial soil communities by metabolic and genetic fingerprinting in addition to conventional testing procedures. Applied and Environmental Microbiology. 1998;64 (8):2814-2821.

Pampulha ME, Oliveira A. Impact of an herbicide combination of bromoxynil and prosulfuron on soil microorganisms. Current Microbiology. 2006;53:238-243.

Iqbal Z, Hussain A, Latif A, Asi MR, Chaudhary JA. Impact of pesticide applications in cotton agroecosystem and soil bioactivity studies I: Microbial populations. J Biol Sci. 2001;1(7):640-644.

Ani AL, Hmoshi MA, Kanaan RM, Thanoon AA. Effect of pesticides on soil microorganisms. In Journal of Physics: Conference Series. IOP Publishing. 2019;1294(7):072007.

Singh G, Wright D. In vitro studies on the effects of herbicides on the growth of rhizobia. Letters in applied Microbiology. 2002;35(1):12-16.

Seghers D, Verthé K, Reheul D, Bulcke R, Siciliano SD, Verstraete W, et al. Effect of long-term herbicide applications on the bacterial community structure and function in an agricultural soil. FEMS Microbiology Ecology. 2003;46(2):139-146.

Tsui MTK, Chu LM. Aquatic toxicity of glyphosate-based formulations: comparison between different organisms and the effects of environmental factors. Chemosphere. 2003;52(7):1189-1197.

Piotrowska-Seget Z, Engel R, Nowak E, Kozdrój J. Successive soil treatment with captan or oxytetracycline affects non-target microorganisms. World Journal of Microbiology and Biotechnology. 2008;24: 2843-2848.

Odukuma LO, Osuagwu C. Tolerance of chemolithotrophic bacteria to organichlorine, organophosphate and contaminant pesticide. Journal of Agriculture and Environmental Engineering Tecnology. 2004;1(1):7-15.

Wesley B, Ajugwo G, Adeleye S, Ibegbulem C, Azuike P. Effects of agrochemicals (insecticides) on microbial population in soil. EC Microbiology. 2017; 8(4):211-21.

Filimon MN, Voia SO, Popescu RO, Dumitrescu GA, Ciochina LP, Mituletu M, et al. The effect of some insecticides on soil microorganisms based on enzymatic and bacteriological analyses. Romanian Biotechnological Letters. 2015;20(3): 10439-10447.

Pandey S, Singh DK. Total bacterial and fungal population after chlorpyrifos and quinalphos treatments in groundnut (Arachis hypogaea L.) soil. Chemosphere. 2004;55(2):197-205.

Zainuddin N, Keni MF, Ibrahim SA, Masri MM. Effect of integrated biofertilizers with chemical fertilizers on the oil palm growth and soil microbial diversity. Biocatalysis and Agricultural Biotechnology. 2022; 39:102237.

Shah GM, Ali H, Ahmad I, Kamran M, Hammad M, Shah GA, et al. Nano agrochemical zinc oxide influences microbial activity, carbon, and nitrogen cycling of applied manures in the soil-plant system. Environmental Pollution. 2022; 293:118559.

Santos JB, Ferreira EA, Kasuya MC, da Silva AA, de Oliveira Procópio S. Tolerance of Bradyrhizobium strains to glyphosate formulations. Crop Protection. 2005;24(6):543-547.

Fabra A, Duffard R, De Duffard AE. Toxicity of 2, 4-dichlorophenoxyacetic acid to Rhizobium sp in pure culture. Bulletin of environmental contamination and toxicology. 1997;59(4):645-652.

Bertholet J, Clark KW. Effect of trifluralin and metribuzin on faba bean growth, development, and symbiotic nitrogen fixation. Canadian journal of plant science. 1985;65:9-21.

Sawicka A, Selwet M. Effect of active ingredients on Rhizobium and Bradyrhizobium legume dinitrogen fixation. Polish Journal of Environmental Studies. 1998;7(5):317-320.

Khan MS, Zaidi A, Aamil M. Influence of herbicides on chickpea-Mesorhizobium symbiosis. Agronomie. 2004;24(3): 123-127.

Kyei-Boahen S, Slinkard AE, Walley FL. Rhizobial survival and nodulation of chickpea as influenced by fungicide seed treatment. Canadian Journal of Microbiology. 2001;47(6):585-589.

Van Zwieten L, Ayres MR, Morris SG. Influence of arsenic co-contamination on DDT breakdown and microbial activity. Environmental Pollution. 2003;124(2):331-339.

Kinney CA, Mandernack KW, Mosier AR. Laboratory investigations into the effects of the pesticides mancozeb, chlorothalonil, and prosulfuron on nitrous oxide and nitric oxide production in fertilized soil. Soil Biology and Biochemistry. 2005;37(5):837-850.

Gupta A, Singh UB, Sahu PK, Paul S, Kumar A, Malviya D et al. Linking soil microbial diversity to modern agriculture practices: A review. International Journal of Environmental Research and Public Health. 2022;19(5):3141.

Jena PK, Adhya TK, Rao VR. Nitrogen-fixing bacterial populations as influenced by butachlor and thiobencarb in rice soils. Zentralblatt für Mikrobiologie. 1990;145(6): 469-474.

Smith SE, Read D. Growth and carbon economy of arbuscular mycorrhizal symbionts. Mycorrhizal symbiosis. 2008;117-114.

Smith MD, Hartnett DC, Rice CW. Effects of long-term fungicide applications on microbial properties in tallgrass prairie soil. Soil Biology and Biochemistry. 2000;32:935-946.

Cycoń M, Piotrowska-Seget Z, Kaczyńska A, Kozdrój J. Microbiological characteristics of a sandy loam soil exposed to tebuconazole and λ-cyhalothrin under laboratory conditions. Ecotoxicology. 2006;15:639-646.

Monkiedje A, Ilori MO, Spiteller M. Soil quality changes resulting from the application of the fungicides mefenoxam and metalaxyl to a sandy loam soil. Soil Biology and Biochemistry. 2002;34(12): 1939-1948.

Pasaribu A, Mohamad RB, Hashim A, Rahman ZA, Omar D, Morshed MM, et al. Effect of herbicide on sporulation and infectivity of vesicular arbuscular mycorrhizal (Glomus mosseae) symbiosis with peanut plant. J. Anim. Plant Sci. 2013;23(3):1671-1678.

Zaller JG, Heigl F, Ruess L, Grabmaier A. Glyphosate herbicide affects belowground interactions between earthworms and symbiotic mycorrhizal fungi in a model ecosystem. Scientific reports. 2014;4(1):1-8.

Lu T, Zhang Q, Lavoie M, Zhu Y, Ye Y, Yang J, et al. The fungicide azoxystrobin promotes freshwater cyanobacterial dominance through altering competition. Microbiome. 2019;7:1-13.

Pandher MS, Kaur G, Gosal, SK, Gupta RP. Effect of herbicides on the growth and nitrogen fixation by blue green algae. Res Dev Report. 1994:11(1–2):9-13.

Megharaj M. Heavy pesticide use lowers soil health. Farming Ahead. 2002;121:37-38.

Megharaj M, Kantachote D, Singleton I, Naidu R. Effects of long-term contamination of DDT on soil microflora with special reference to soil algae and algal transformation of DDT. Environmental Pollution. 2000;109(1):35-42.

Cáceres TP, Megharaj M, Naidu R. Biodegradation of the pesticide fenamiphos by ten different species of green algae and cyanobacteria. Current microbiology. 2008;57:643-646.

Mostafa FI, Helling CS. Impact of four pesticides on the growth and metabolic activities of two photosynthetic algae. Journal of Environmental Science and Health, Part B. 2002;37(5):417-444.

Enserink M, Hines PJ, Vignieri SN, Wigginton NS, Yeston JS. The pesticide paradox. Science. 2013;341(6147):728-729.

Gupta S, Dikshit AK. Biopesticides: An ecofriendly approach for pest control. Journal of Biopesticides. 2010;3(1 Special Issue):186-188.

Sharma MP, Sharma AN, Hussaini SS. Entomopathogenic nematodes, a potential microbial biopesticide: mass production and commercialisation status–A mini review. Archives of Phytopathology and Plant Protection. 2011;44(9):855-870.

Dwivedi D, Johri BN, Ineichen K, Wray V, Wiemken A. Impact of antifungals producing rhizobacteria on the performance of Vigna radiata in the presence of arbuscular mycorrhizal fungi. Mycorrhiza. 2009;19(8):559-70.

Bottiglieri M, Keel C. Characterization of PhlG, a hydrolase that specifically degrades the antifungal compound 2, 4-diacetylphloroglucinol in the biocontrol agent Pseudomonas fluorescens CHA0. Applied and Environmental Microbiology. 2006;72(1):418-427.

Karpunina LV, Mel’nikova UY, Konnova SA. Biological Role of Lectins from the Nitrogen-Fixing Paenibacillus polymyxa Strain 1460 During Bacterial–Plant-Root Interactions. Current microbiology. 2003; 47(5):376-378.

Tripathi AK, Mishra S. Plant Monoterpenoids (Prospective Pesticides). Ecofriendly Pest Management for Food Security, Chapter 16. Academic Press: Cambridge, MA, USA. 2016: 507-524.

Neal AL, Ahmad S, Gordon-Weeks R, Ton J. Benzoxazinoids in root exudates of maize attract Pseudomonas putida to the rhizosphere. Plos One. 2012;7(4):e35498.

Akiyama K, Hayashi H. Strigolactones: chemical signals for fungal symbionts and parasitic weeds in plant roots. Annals of botany. 2006;97(6):925-931.

Pathan SI, Větrovský T, Giagnoni L, Datta R, Baldrian P, Nannipieri P, et al. Microbial expression profiles in the rhizosphere of two maize lines differing in N use efficiency. Plant and Soil. 2018;433(1): 401-413.

Govindachari TR, Suresh G, Gopalakrishnan G, Masilamani S, Banumathi B. Antifungal activity of some tetranortriterpenoids. Fitoterapia. 2000;71 (3):317-320.

Ipsilantis I, Samourelis C, Karpouzas DG. The impact of biological pesticides on arbuscular mycorrhizal fungi. Soil Biology and Biochemistry. 2012;45:147-55.

Kiran U, Patra DD. Medicinal and aromatic plant materials as nitrification inhibitors for augmenting yield and nitrogen uptake of Japanese mint (Mentha arvensis L. Var. Piperascens). Bioresource Technology. 2003;86(3):267-276.

Heylings JR, Farnworth MJ, Swain CM, Clapp MJ, Elliott BM. Identification of an alginate-based formulation of paraquat to reduce the exposure of the herbicide following oral ingestion. Toxicology. 2007;241(1-2):1-10.

Abdollahdokht D, Gao Y, Faramarz S, Poustforoosh A, Abbasi M, Asadikaram G, et al. Conventional agrochemicals towards nano-biopesticides: An overview on recent advances. Chemical and biological technologies in agriculture. 2022;9(1):1-19.

An C, Sun C, Li N, Huang B, Jiang J, Shen Y, et al. Nanomaterials and nanotechnology for the delivery of agrochemicals: Strategies towards sustainable agriculture. Journal of Nanobiotechnology. 2022;20(1):1-19.