Ammoniacal and Nitrate Nitrogen Release Pattern from Biochar and Biochar Blended Urea Fertilizers in Sandy Soil
Kavya S. R.
Department of Soil Science and Agricultural Chemistry, College of Agriculture, Vellayani, Thiruvananthapuram-695522, Kerala, India.
Rani B. *
Department of Soil Science and Agricultural Chemistry, College of Agriculture, Vellayani, Thiruvananthapuram-695522, Kerala, India.
Aparna B.
Department of Organic Agriculture, College of Agriculture, Vellayani, Thiruvananthapuram-695522, Kerala, India.
Gladis R.
Department of Soil Science and Agricultural Chemistry, Agricultural Research Station, Thiruvalla, Kerala, India.
*Author to whom correspondence should be addressed.
Abstract
Biochar, an organic product of thermal decomposition of biomass in an oxygen limited environment can be used as a nutrient carrier to delay the release of nutrients into the soil, reduce nutrient leaching, and improve the nutrient utilization efficiency of fertilizers. Nutritional enhancement of biochar through fertilizer blending could be a low cost but high efficiency solution compared to non-blended fertilizers. However, the rate of nutrient release from the blended biochar fertilizer in different soils is ambiguous. Hence a 12 month incubation study was conducted in sandy soil (ultisol) of Thiruvananthapuram district of Kerala to elucidate the ammoniacal and nitrate nitrogen release rate and pattern from the produced paddy husk biochar, biochar and biochar bentonite (1:1) each blended with urea fertilizer in different ratios (1:0.5, 1:1, 1:2) including an absolute control. The individual effects of biochar, biochar-bentonite and urea were also studied. Paddy husk biochar was produced by the process of slow pyrolysis and biochar- blended urea fertilizers by the adsorbent process. To evaluate the influence of bentonite clay on the nutrient release pattern of biochar, it was blended with biochar and urea fertilizer. The highest total nitrogen content among the produced fertilizers was recorded in biochar: urea in 1:2 (33.04%) followed by biochar-bentonite: urea in a 1:2 ratio (31.13%). The incubation study revealed that the maximum release of ammoniacal nitrogen from soil+ urea fertilizer was at 30 days (115.73 mg kg-1) followed by a sharp decline, maintaining a low value till the end of incubation, whereas the release was sustained and gradually increased to reach a maximum at the 180th day (117.6 mg kg-1) for soil+ biochar: urea in 1:1 ratio. Nitrate nitrogen also followed the same trend with the maximum release observed for biochar: urea in 1:1 on the 150th day (151.2 mg kg-1). The release of nitrate nitrogen was more than that of ammoniacal nitrogen throughout the incubation period for all the treatments. Among the blended fertilizers, content of both ammoniacal and nitrate nitrogen were comparatively less for biochar –bentonite blended urea fertilizers. Thus, blending of urea with biochar/ biochar-bentonite prolonged the duration of maximum nutrient release.
Keywords: Biochar, biochar blended urea fertilizers, ammoniacal and nitrate nitrogen