Entomopathogenic Nematodes and their Symbiotic Bacteria: Microorganism-Host Interactions: A Review

Gitanjali Devi *

Department of Nematology, Assam Agricultural University, Jorhat-785013, Assam, India.

*Author to whom correspondence should be addressed.


Entomopathogenic nematodes (EPNs) are natural enemies of insect pests and acts as promising bio-control agent of the insect pests of many commercial crops.They are having a symbiotic relationships with a bacterium species. Photorhabdus and Xenorhabdus bacteria live in association with Heterorhabditis and Steinernema, respectively. Their association is mutualistic and persistent..With the help of the nematode, the bacteria penetrate and proliferate inside the insect hemocoel, causing septicemia, and providing suitable environment for nematode reproduction.The nematode and bacterial interaction utilize a varieties of pathogenic strategies that provide disease condition of the insect host of several insect orders .The importance for research in EPNs and their symbiotic bacteria are increasing and progress has been made in different fields of biology. Some of the EPN species are used as models for various biological studies especially in molecular genetics. This review describes the current state of information of entomopathogenic nematodes and their symbiotically bacteria and the interaction between them and the resultant death of insect. The studies on EPN-bacterial complex-symbiosis will ensure that EPNs will be an effective biopesticides that will help in sustainable agricultural production.

Keywords: Entomopathogenic nematodes (EPNs), symbiotic bacteria, microorganism-host interaction, insect pests

How to Cite

Devi , Gitanjali. 2023. “Entomopathogenic Nematodes and Their Symbiotic Bacteria: Microorganism-Host Interactions: A Review”. International Journal of Environment and Climate Change 13 (9):3443-55. https://doi.org/10.9734/ijecc/2023/v13i92597.


Download data is not yet available.


Chang DZ, Serra L, Lu D, Mortazavi A, Dillman AR. A core set of venom proteins is released by entomopathogenic nematodes in the genus Steinernema. PLoS Pathogens. 2019;15: e1007626. DOI: 10.1371/journal.ppat.1007626

Hunt DJ, Nguyen KB, Spiridonov SE. Steinernematidae: Species descriptions. Adavances in entomopathogenic nematode taxonomy and phylogeny. Brill. 2016:111.

Koppenhofer AM, Shapiro DI, Hiltpold I.Entomopathogenic nematodes in sustainable food production. Frontiers in Sustainable Food systems. 2020;4:1-14. DOI: 10.3389/fsufs.2020.00125

Kaya HK, Gaugler R. Entomopathogenic nematodes. Annual Review of Entomology. 1993:38(1),181-206.

Griffin C.T. Perspectives on the behavior of entomopathogenic nematodes from dispersal to reproduction: Traits contributing to nematode fitness and biocontrol efficacy. Journal of Nematology. 2012: 44(2):177-84.

Waterfield N, Ciche T, Clarke D. Photorhabdus and a host of hosts. Annual Review of Microbiology .2009:63,557-574.

Vicente-Díez I, Blanco-Perez R, González-Trujillo MDM, Pou A, Campos-Herrera R. Insecticidal effect of entomopathogenic nematodes and the cell-free supernatant from their symbiotic bacteria against Philaenus spumarius (Hemiptera: Aphrophoridae) Nymphs. Insects. 2021; 12(5):448.

Shapiro-Ilan DI, Hazir S, Glazer I. Basic and applied research: Entomopathogenic nematodes. In: Lacey LA (ed) Microbial agents for control of insect pests: from discovery to commercial development and use. Academic Press, San Diego. 2017;91-105.

Ciche TA, Kim KS, Kaufmann-Daszczuk B, Nguyen KC, Hall D.. Cell invasion and matricide during Photorhabdus luminescens transmission by Heterorhabditis bacteriophora nematodes. Applied and Environmental Microbiology. 2008;74:2275-2287

Fujimoto A, Lewis EE, Cobanoglu G, Kaya HK. Dispersal, infectivity and sex ratio of early or late emerging infective juveniles of the entomopathogenic nematode Steinernema carpocapsae. Journal of Nematology. 2007;39:333-337.

Ryder JJ, Griffin CT. Density dependent fecundity and infective juvenile production in the entomopathogenic nematode Heterorhabditis megidis. Parasitology. 2002;125:83-92.

Koppenhofer AM, Kaya HK, Shanmugam S, Wood GL. Inter-specific competition between steinernematid nematodes within an insect host. Journal of Invertebrate Pathology. 1995;66:99-103.

Alatorre-Rosas R, Kaya HK. Interspecific competition between entomopathogenic nematodes in the genera Heterorhabditis and Steinernema for an insect host in sand. Journal of Invertebrate Pathology. 1990;55(2):179-188.

Koppenhofer AM, Fuzy AM, Kaya HK. Coexistence of two Steinernematid nematode species (Rhabditida: Steinernematidae) in the presence of two host species. Applied Soil Ecology. 1996;4:221-230.

Boemare NE, Laumond C, Mauleon H. The entomopathogenic nematode bacterium complex: Biology, life cycle and vertebrate safety. Biocontrol Science and Technology. 1996;6:333-346.

Lu D, Macchietto M, Chang D, Barros MM, Baldwin J, Mortazavi A, Dillman AR. Activated entomopathogenic nematode infective juveniles release lethal venom proteins. PLoS Pathogens. 2017;13(4),e1006302. doi:10.1371/ journal.ppat.1006302.

Adeolu M, Alnajar S, Naushad S, Gupta RS. Genome-based phylogeny and taxonomy of the ‘Enterobacteriales’: Proposal for Enterobacterales ord. nov. divided into the families Enterobacteriaceae, Erwiniaceae fam.nov., Pectobacteriaceae fam.nov., Yersiniaceae fam.nov., Hafniaceae fam.nov., Morganellaceae fam.nov., and Budviciaceae fam. Nov. International Journal of Systematic and Evolutionary Microbiology. 2016;66:5575-5599.

Chaston JM, Suen MG, Tucker SL, AW et al. The entomopathogenic bacterial endosymbionts Xenorhabdus and Photorhabdus:Convergent lifestyles from divergent genomes. PLoS One. 2011;6,e27909.


Sajnaga E, Kazimierczak W. Evolution and taxonomy of nematode-

associated entomopathogenic bacteria of the genera Xenorhabdus and

Photorhabdus: An overview. Symbiosis. 2020;80:1-13.

Bird AF, Akhurst RJ. The nature of the intestinal vesicle in nematodes of the family Steinernematidae. International Journal of Parasitology. 1983;13:599-606.

Murfin KE, Dillman AR, Foster JM, Bulgheresi Slatko BE, Sternberg PW, Goodrich-Blair H. Nematode-bacterium symbioses-cooperation and conflict revealed in the ‘omics’ age. The Biological Bulletin. 2012;223(1):85-102.

Akhurst RJ, Boemare NE. A numerical taxonomic study of the genus Xenorhabdus (Enterobacteriaceae) and proposed elevation of the subspecies of X. nematophilus to species. Journal of General Microbiology. 1988;134(7):1835-1845.

Koppenhofer HS, Gaugler R. Entomopathogenic nematode and bacteria

mutualism. In: White J, Torres M (eds.) Defensive mutualism in microbial

symbiosis. CRC Press, Boca Raton, Florida. 2009;99-116.

Eckstein S.; Dominelli N.; Brachmann A.; Heermann R. Phenotypic heterogeneity of the insect pathogen Photorhabdus luminescens: Insights into the fate of secondary cells. Applied and Environmental Microbiology. 2019;85(22). Available:https://doi.org/10.1128/AEM.01910-19

Yuksel E, Imren M, Ozdemir E, Bozbuga R, Canhilal R. Insecticidal effect of entomopathogenic nematodes and the cell-free supernatants from their symbiotic bacteria against different larval instars of Agrotis segetum (Denis & Schiffermuller) Lepidoptera: Noctuidae). Egyptian Journal of Biological Pest Control. 2022:32, 54.


Clarke D.J. The regulation of secondary metabolism in Photorhabdus. In: The molecular biology of Photorhabdus bacteria. Current Topics in Microbiology and Immunology.Vol.402.Ffrench-Constant R(Ed.).Springer, Cham. 2017;81-102.

Lulamba TE, Green E, Serepa-Dlamini MH. Genome assembly and annotation of Photorhabdus heterorhabditis strain ETL reveals genetic features involved in pathogenicity with its associated entomopathogenic nematode and anti-host effectors with biocontrol potential applications. Gene. 2021;795:145780. DOI: 10.1016/j.gene.2021:145780.

Gatsogiannis C, Lang A, Meusch D, Pfaumann V, Hofnagel O, Benz R, Raunser S. A syringe-like injection mechanism in Photorhabdus luminescens toxins.Nature. 2013;495: 520-523.

Sheets J, Aktories K. Insecticidal toxin complexes from Photorhabdus luminescens. In: The molecular biology of Photorhabdus bacteria. In: Current Topics in Microbiology and Immunology. Ffrench-Constant (Ed.).Springer, Cham. 2017;402: 3-24.

Nollmann FI, Heinrich AK, Brachmann AO, Morisseau C, Mukherjee K, Casanova-Torres AM, Strobl F, Kleinhans D, Kinski S, Schultz K, Beeton ML, Kaiser M, Chu YY, Ke LP, Thanwisai A, Bozhuyuk KAJ, Chantratita N, Gçtz F, Waterfield NR, Vilcinskas A, Stelzer EHK, Goodrich-Blair H, Hammock BD, Bode HB. A Photorhabdus natural product inhibits insect juvenile hormone Epoxide Hydrolase. ChemBioChem. 2015;16:766 -771.

Boemare NE, Boyer-Giglio MH, Thaler JO, Akhurst RJ, Brehelin M. Lysogeny and bacteriocinogeny in Xenorhabdus nematophilus and other Xenorhabdus spp. Applied and Environmental Microbiology . 1992;58,3032- 3037.

Morales-Soto N, Forst SA. The xnp1 P2-like tail synthesis gene cluster encodes xenorhabdicin and is required for interspecies competition. Journal of Bacteriology. 2011;193:3624-3632. Available:https://doi.org/ 10.1128/JB. 00092-11

Burnell AM, Stock P. Heterorhabditis, Steinernema and their bacterial symbionts: lethal pathogens of insects. Nematology. 2000;2:31-42.

Massaoud MK, Marokhazi J, Fodor A, Venekei I. Proteolytic enzyme production by strains of the insect pathogen Xenorhabdus and characterization of an early-log-phase-secreted protease as a potential virulence factor. Applied and Environmental Microbiology. 2010;76:6901-6909.

Caldas C, Cherqui A, Pereira A, Simoes N. Purification and characterization of an extracellular protease from Xenorhabdus nematophila involved in insect immune-suppression. Applied and Environmental Microbiology . 2002;68:1297-1304.

Bager R, Roghanian M, Gerdes K, Clarke DJ. Alarmone (p) ppGpp regulates the transition from pathogenicity to mutualism in Photorhabdus luminescens. Molecular Microbiology. 2016;100:735-747.

Xi X, Lu X, Zhang X, Bi Y, Li X, Yu Z. Two novel cyclic depsipeptides Xenematides F and G from the entomopathogenic bacterium Xenorhabdus budapestensis. The Journal of Antibiotics. 2019;72(10).

DOI: 10.1038/s41429-019-0203-y.

Brivio MF, Toscano A, De Pasquale SM, De Lerma Barbaro A, Giovannardi S, Finzi G. Surface protein components from entomopathogenicnematodes and their symbiotic bacteria: effects on immune responses of the greater wax moth, Galleria mellonella (Lepidoptera: Pyralidae). Pest Managent Science. 2018;74:2089-2099.

DOI: 10.1002/ps.4905

Derzelle S, Duchaud E, Kunst F, Danchin A, Bertin P. Identification,characterization, and regulation of a cluster of genes involved in carbapenem biosynthesis in Photorhabdus luminescens. Applied and Environmental Microbiology. 2002;68(8):3780-3789. DOI:10.1128/AEM. 68.8.3780-3789.2002.

Jones RS, Fenton A, Speed MP. ‘Parasite-induced aposematism’ protects entomopathogenic nematode parasites against invertebrate enemies. Behavioral Ecology. 2016;27: 645-651.

Ng WL, Bassler BL. Bacterial quorum-sensing network architectures. Annual Review of Genetics. 2009;43:197-222.

Tobias NJ, Heinrich AK, Eresmann H, Wright PR, Neubacher N, Backofen R, Bode HB. Photorhabdus–nematode symbiosis is dependent on hfq-mediated regulation of secondary metabolites. Environmental Microbiology. 2017;19:119-129.

Cariss SJ, Constantinidou C, Patel MD, Takebayashi Y, Hobman JL, Penn CW, Avison MB. YieJ (CbrC) mediates CreBC-dependent colicin E2 tolerance in Escherichia coli. Journal of Bacteriology . 2010;192(13):3329-3336.

Meligy AMA. Comparative study of element contents in seven isolates of entomopathogenic nematodes. Egyptian Journal of Biological Pest Control. 2018;28:1. DOI 19.1186/s41938-017-0002-3.

Goodrich-Blair H. They've got a ticket to ride:Xenorhabdus nematophila -Steinernema carpocapsae symbiosis . Current Opinion in Microbiology. 2007;10:225-230.

Viljakainen L. Evolutionary genetics of insect innate immunity. Briefings in Functional Genomics. 2015;14(6):407-412.

Brivio MF, Mastore M. When appearance misleads: The role of the entomopathogen surface in the relationship with its host. Insects. 2020;11:387. DOI: 10.3390/insects11060387.

Vlisidou I, Hapeshi A, Healey J, Smart K, Yang G, Waterfield NR. The Photorhabdus asymbiotica virulence cassettes deliver protein effectors directly into target eukaryotic cells. eLife . 2019:8,e46259.

DOI: https://doi.org/10.7554/eLife.46259.

Li J, Chen G, Webster JM. Nematophin, a novel antimicrobial substance produced by Xenorhabdus nematophilus (Enterobactereaceae). Canadian Journal of Microbiology. 1997; 43(8):770-773.

Pantel L, Florin T, Dobosz M, Mankin A, Polikanov YS. Odilorhabdins, antibacterial agents that cause miscoding by binding at a new ribosomal site. Molecular Cell. 2018;70(1):83-94.

Imai Yu, Meyer KJ, Linishi A, Favre-Godal Q, Green R, Manuse S. A new antibiotic selectively kills gram-negative pathogens. Nature. 2019;576(7787):459.

Maglangit F, Yu Y, Deng H. Bacterial pathogens: threat or treat (a review on bioactive natural products from bacterial pathogens. Natural Product Reports. 2021;38:782-821.

Wang Y, Gaugler R. Steinernema glaseri surface coat protein suppresses the immune response of Popillia japonica (Coleoptera: Scarabaeidae) larvae. Biological Control. 1999;14(1):45-50.

Toubarro D, Lucena M, Nascimento G, Costa G, Montiel R, Varela A. An apoptosis–inducing serine protease secreted by the entomopathogenic nematode Steinernema carpocapsae. International Journal for Parasitology. 2009;39(12):1319-30.

Eleftherianos I, Ffrench-Constant R, Clarke DJ, Dowling AJ. Dissecting the immune response to the entomopathogen Photorhabdus.Trends in Microbiology. 2010;18(12):552-560.

Poinar GO Jr., Thomas GM. A new bacterium, Achromobacter nematophilus sp.nov. (Achromobacteriaceae: Eubacteriales) associated with a nematode. International Bulletin of Bacteriological Nomenclature and Taxonomy. 1965;15:249-252.

Akhurst RJ. Taxonomic study of Xenorhabdus, a genus of bacteria symbiotically associated with insect pathogenic nematodes. International Journal of Systematic Bacteriology. 1983;33:38-45.

Yamanaka S, Hagiwara A, Nishimura Y, Tanabe H, Ishibashi N. Biochemical and physiological characteristics of Xenorhabdus species, symbiotically associated with entomopathogenic nematodes including Steinernema kushidai and their pathogenicity against Spodoptera litura(Lepidoptera: Noctuidae). Archives of Microbiology. 1992;158:387-393.

Boemare NE, Akhurst RJ, Mourant RG. DNA relatedness between Xenorhabdus spp. Enterobacteriaceae), symbiotic bacteria of entomopathogenic nematodes, and a proposal to transfer Xenorhabdus luminescens to a new genus, Photorhabdus gen. nov. International Journal of Systematic Bacteriology. 1993;43:249-255.

Elawad S, Ahmad W, Reid AP. Steinernema abbasi sp.n. (Nematoda:Steinernematidae) from the Sultanate of Oman. Fundamental and Applied Nematology.1997;20(5):435-442.

Lengyel K, Lang E, Fodor A, Szallas E, Schumann P, Stackebrandt E. Description of four novel species of Xenorhabdus, family Enterobacteriaceae: Xenorhabdus budapestensis sp.nov., Xenorhabdus ehlersii sp.nov., Xenorhabdus innexi sp.nov.,and Xenorhabdus szentirmaii sp.nov. Systematic and Applied Microbiology. 2005;28:115-122.

Mracek Z, Nguyen KB, Tailliez P, Boemare N, Chen S. Steinernema sichuanense n.sp (Rhabditida, Steinernematidae), a new species of entomopathogenic nematode from the province of Sichuan, east Tibetan Mts., China. Journal of Invertebrate Pathology. 2006;93(3): 157-169.

Ferreira T, Reenen C, Pages S, Tailliez P, Malan AP, Dicks LM. Photorhabdus luminescens subsp. noenieputensis subsp.nov., a symbiotic bacterium associated with a novel Heterorhabditis species related to Heterorhabditis indica. International Journal of Systematic and Evolutionary Microbiology. 2013;63(5):1853-1858.

Tailliez P, Pages S, Ginibre N, Boemare N. New insight into diversity in the genus Xenorhabdus, including the description of ten novel species. International Journal of Systematic and Evolutionary Microbiology. 2006:56:2805-2818.

Dreyer J, Malan AP, Dicks MT. First report of a symbiotic relationship between Xenorhabdus griffiniae and an unknown Steinernema from South Africa. Archives of Microbiology. 2017;200:349-353.

Tailliez P, Pages S, Edgington S, Tymo LM, Buddie AG. Description of Xenorhabdus magdalenensis sp.nov., the symbiotic bacterium associated with Steinernema austral. International Journal of Systematic and Evolutionary Microbiology. 2012;62:1761-1765.

Kuwata R, Qiu L, Wang W, Harada Y, Yoshida M, Kondo E, Yoshiga T. Xenorhabdus ishibashii sp.nov., isolated from the entomopathogenic nematode Steinernema aciari. International Journal of Systematic and Evolutionary Microbiology. 2013;63(5):1690-1695.

Ferreira T, Reenen C, Endo A, Tailliez P, Pages S, Sproer C, Malan AP, Dicks LMT. Photorhabdus heterorhabditis sp. nov., a symbiont of the entomopathogenic nematode Heterorhabditis zealandica. International Journal of Systematic and Evolutionary Microbiology. 2014; 64:1540-1545

Ogier JC, Duvic B, Lanois A, Givaudan A, Gaudriault S. A new member of the growing family of contact-dependent growth inhibition systems in Xenorhabdus doucetiae. PLoS One. 2016:11(12),e0167443.

DOI: 10.1371/journal. pone. 0167443.

Bhat AH, Sharma L. Chaubey AK. Characterisation of Steinernema surkhetense and its symbiont Xenorhabdus stockiae and a note on its geographical distribution. Egyptian Academic Journal of Biological Sciences. 2020;13(1):105-122.

Tailliez P, Laroui C, Ginibre N, Paule A, Pages S, Boemare N. Phylogeny of Photorhabdus and Xenorhabdus based on universally conserved protein-coding sequences and implications for the taxonomy of these two genera. Proposal of new taxa: X.vietnamensis sp. Nov., P. luminescens subsp. caribbeanensis subsp. nov., P.luminescens subsp. hainanensis subsp. nov., P. temparata subsp. khanii subsp.nov., P.temperata subsp. tasmaniensis subsp. thracensis as P.temperata subsp. thracensis comb.nov. International Journal of Systematic and Evolutionary Microbiology. 2010;60(8):1921-1937.

Kampfer P, Tobias N, Long PK, Bode HB, Glaeser S. Xenorhabdus thuongxuanensis sp.nov.and Xenorhabdus eapokensis sp.nov., isolated from Steinernema species. International Journal of Systematic and Evolutionary Microbiology. 2017;67(5). DOI:10.1099/ijsem.0.001770.

Park Y, Kang S, Sadekuzzaman M, Kim H, Jung JK, Kim Y. Identification and bacterial characteristics of Xenorhabdus hominickii ANU101 from an entomopathogenic nematode,Steinernema monticolum. Journal of Invertebrate Pathology. 2017;144:74-87.

Sajnaga E, Kazimierczak W, Skowronek M, Lis M, Skrzypek T, Wasko A. Steinernema poinari (Nematoda: Steinernematidae): a new symbiotic host of entomopathogenic bacteria Xenorhabdus bovienii. Archives of Microbiology. 2018;200(9):1307-1316.

Bhat AH, Chaubey AK, Puza V. The first report of Xenorhabdus indica from Steinernema pakistanense: co-phylogenetic study suggests co-speciation between X.indica and its steinernematid nematodes. Journal of Helminthology. 2019;93(1):81-90.

Ubaub L, Stock P. First report of Steinernema longicaudum and its bacterial symbionts, Xenorhabdus species, in pummelo orchards of Davao region, Philippines. Philipp. Scient. 2018;53: 66-77.

Thomas GM, Poinar GO Jr. Xenorhabdus gen. nov., a genus of entomopathogenic nematophilic bacteria of the family Enterobacteriaceae. International Journal of Systematic Bacteriology. 1979;29:352-360.

Fischer-Le Saux M, Viallard V, Brunel B, Normand P, Boemare NE. Polyphasic classification of the genus Photorhabdus and proposal of new taxa: P. luminescens subsp. luminescens subsp. nov., P. luminescens subsp. akhurstii subsp. nov., P. luminescens subsp. laumondii subsp. nov., P. temperata sp. nov., P. temperata subsp. temperata subsp. nov. P. asymbiotica sp. nov. International Journal of Systematic Bacteriology. 1999;49(4): 1645-1656. DOI: 10.1099/00207713-49-4-1645.

Machado RAR, Wuthrich D, Kuhnert P, Rce CCM, Thonen L, Ruiz C, Zhang X, Robert CAM, Karimi J, Kamali S, Ma J, Bruggmann R, Erb M. Whole-genome-based revisit of Photorhabdus phylogeny: proposal for theelevation of most Photorhabdus subspecies to the species level and description of one novel speciesPhotorhabdus bodei sp. nov., and one novel subspecies Photorhabdus laumondii subsp. clarkei subsp. nov.International Journal of Systematic and Evolutionary Microbiology. 2018;68: 2664-2681. DOI:https://doi.Org/10.1099/ ijsem.0.002820, PMID: 29877789.

Akhurst RJ, Boemare NE, Janssen PH, Peel MM, Alfredson DA, Beard CE. Taaxonomy of Australian clinical isolates of the genus Photorhabdus and proposal of Photorhabdus asymbiotica subsp. asymbiotica subsp. nov. and P.asymbiotica subsp. australis subsp.nov. International Journal of Systematic and Evolutionary Microbiology. 2004;54:1301-1310.

Toth T, Lakatos T. Photorhabdus temperata subsp. cinerea subsp .nov., isolated from Heterorhabditis nematodes. International Journal of Systematic and Evolutionary Microbiology. 2008;58:2579-2581.

Hazir S. Stackebrand E, Lang E, Schumann P, Ehlers RU, Keskin N. Two new subspecies of Photorhabdus luminescens, isolated from Heterorhabditis bacteriophora (Nematoda: Heterorhabditidae): Photorhabdus luminescens subsp. kayaii subsp. nov. and Photorhabdus luminescens subsp. thracensis subsp. nov. Systematic and Applied Microbiology. 2004:27(1): 36-42. DOI: 10.1078/0723-2020-00255.

An R, Grewal PS. Photorhabdus luminescens subsp. kleinii subsp.,nov. (Enterobacteriales: Enterobacteriaceae). Current Microbiology. 2011;62:539-543.

Orozco RA, Hill T, Stock SP. Characterization and phylogenetic relationships of Photorhabdus sub sp. sonorensis (y-proteobacteria: enterobacteriacae), the bacterial symbiont of the entomopathogenic nematode Heterorhabditis sonorensis (Nematoda: Heterorhabditidae). Current Microbiology. 2013;66(1):30-39.

Glaeser S, Tobias N, Thanwisai A, Chantratita N, Bode HB. Photorhabdus luminescens subsp. namnaonensis subsp.nov., isolated from Heterorhabditis baujardi nematodes in Nam Nao district of central Thailand. International Journal of Systematic and Evolutionary Microbiology. 2017:67(4). DOI: 10.1099/IJSEM.0.001761.

Machado RAR, Muller A, Ghazal SM, Thanwisai A, Pages S, Bode HB, Hussein MA, Khlil KM Tisa LS. Photorhabdus heterorhabditis subsp.aluminescens subsp. nov., Photorhabdus heterorhabditis sub sp. heterorhabditis subsp.nov. Photorhabdus australis subsp. thailandensis subsp.nov., Photorhabdus australis subsp.australis subsp.nov., and Photorhabdus aegyptia sp. nov. isolated from Heterorhabditis entomopathogenic nematodes. International Journal of Systematic and Evolutionary Microbiology. 2021;71(1).DOI: 10.1099/ijsem.0.004610.hal-03143425

Stock P. Diversity, biology and evolutionary relationships. In: Nematode Pathogenesis of Insects and Other Pests. R Campos-Herrera (Ed.). Springer, Cham. 2015;3-28.

Han R.; Ehlers R. Effect of Photorhabdus luminescens phase variants on the In vivo and In vitro development and reproduction of the entomopathogenic nematodes Heterorhabditis bacteriophora and Steinernema carpocapsae. FEMS Microbiology Ecology. 2001;35(3):239-247.

DOI:10.1111/j.1574-6941.2001.tb00809 .x.PMID: 11311434

Wenski SL, Cimen H, Berghaus N, Fuchs SW, Hazir S, Bode HB. Fabclavine diversity in Xenorhabdus bacteria. Beilstein Journal of Organic Chemistry. 2020;16(1):956-965.

Ferreira T, Van CA, Tailliez P, Pages S, Malan A, Dicks LMT. First report of the symbiotic bacterium Xenorhabdus indica associated with the entomopathogenic nematode Steinernema yirgalemense. Journal of Helminthology. 2014;1-5. DOI: 10.1017/S0022149X14000583.

Akhurst R, Boemare NF. Biology and taxonomy of Xenorhabdus In: Entomopathogenic nematodes in biological control. R. Gaugler and HK Kaya (Eds.). Boca Raton, CRC Press. 1990;75-87.