Study of Aerosol Impact on the Solar Potential Available in Burkina Faso, West Africa

Main Article Content

Bado Nébon
Mamadou Simina Dramé
Korgo Bruno
Guengane Hassime
Demba Ndao Niang
Saidou Moustapha Sall
Kieno P. Florent
Bathiebo Dieudonné Joseph


This paper is an assessment of aerosols impact on solar potential available in Burkina Faso in 2017. Three measurement stations were selected from the North to the South according to the climatic zones, with sites at Dori (14.035°N, 0.034°W) in the North, Ouagadougou (12.20°N, 1.40°W) in the Center and Gaoua (10.29°N, 3.25°W) in the Southwest, respectively. This study is based on in-situ measurements, satellite observations and a tropospheric standard model of the Streamer radiative transfer code of atmospheric particles. The results show a high availability of solar irradiation with average monthly values ranging between 4.46 kWh/m²/d and 6.82 kWh/m²/d. The most favorable periods with maximum radiation are observed in Spring in March and in Fall in October. Yet, the qualitative comparison between the evolution of aerosols and that of solar potential clearly shows aerosols capacity to influence the radiation at the crossing of the atmosphere. Thus, the aerosols maxima correspond to the solar potential minima. Moreover, a comparison between the day cycles of solar radiation and those of the simulation model shows a good accuracy of the Streamer code to estimate the solar flows at the surface in a standard atmosphere without clouds in Burkina Faso.However, a quantification of the aerosol impact by the Streamer code reveals a reduction in the normal direct flow compared to clear days defined by aerosol optical depth (AOD) less than 0.2 (AOD<0.2) of nearly 75.04% at the Dori site in the North, 57.33% at the Ouagadougou site in the Center and 40.89 % at the Gaoua site in the Southwest during polluted days corresponding to AOD higher than 0.8.This corresponds to an increase in the diffuse flow of 279.69 W/m², 246.05 W/m² and 226.09 W/m², respectively calculated on the same sites. In case of a mixed day (0.2 <AOD <0.8), this decrease in direct solar flow is estimated at 41.25%, 22.11% and 37.13% with an increasein the diffuse solar flux of 115.04 W/m², 150.43 W/m² and 79.58 W/m² at the sites of Dori, Ouagadougou and Gaoua, respectively.

Aerosols, solar potential, model streamer, MODIS, AERONET, Burkina Faso.

Article Details

How to Cite
Nébon, B., Dramé, M., Bruno, K., Hassime, G., Niang, D., Sall, S., Florent, K., & Joseph, B. (2019). Study of Aerosol Impact on the Solar Potential Available in Burkina Faso, West Africa. International Journal of Environment and Climate Change, 9(5), 297-310.
Original Research Article


Nébon B, Dramé MS, Bruno K, Florent KP, Sall SM, Joseph D. Optical and microphysical analysis of aerosols in Sahelian zone : Case of the Ouagadougou City in Burkina Faso. Elixir Int. J. 2018;119: 50975–50982.

Woodward S. Modeling the atmospheric life cycle and radiative impact of mineral dust in the Hadley Centre climate mode. J. Geophys. Res. 2000;106:18155–18166.

Guillaume A. D’Almeida. A model for Saharan dust transport. Am. Meteorol. Soc. 1986;25:903–916.

Drame M, Jenkins GS, Camara M, Robjhon M. Observations and simulation of a Saharan air layer event with a midtropospheric dust layer at Dakar, Senegal , 6 – 7 July 2010. J. Geophys. Res. 2011;116:6–7.

Huang J, Minnis P, Yan H, Yi Y, Chen B, Zhang L, Ayers JK. Dust aerosol effect on semi-arid climate over Northwest China detected from A-Train satellite measure-ments. Atmos. Chem. Phys. 2010;6863–6872.

Prospero JM, Ginoux P, Torres O, Nicholson SE, Gill TE. Environmental characterization of global sources of atmospheric soil dust identified with the nimbus 7 total ozone mapping spectrometer (TOMS) absorbing aerosol product,” Rev. Geophys. 2002;40:1–31.

Li Z, Xia X, Cribb M, Mi W, Holben B, Wang P, Chen H, Tsay S, Eck TF, Zhao F, Dutton EG, Dickerson RE. Aerosol optical properties and their radiative effects in northern China. J. Geophys. Res. 2008; 112:1–11.

Drame MS, Camara M, Gaye AT. Intra-seasonal variability of aerosols and their radiative impacts on sahel climate during the period 2000-2010 using AERONET data. Int. J. Geosci. 2013;4:267–273.

Senghor H, Machu É, Hourdin F, Gaye AT. Seasonal cycle of desert aerosols in western Africa : Analysis of the coastal transition with passive and active sensors. Atmos. Chem. Phys. 2017;17:8395– 8410.

Delfino RJ, Sioutas C, Malik S. Review potential role of ultrafine particles in associations between airborne particle mass and cardiovascular health. Environ. Health Perspect. 2005;113(8):934–946.

Donaldson K, Stone V, Seaton A, Macnee W. Ambient particle inhalation and the cardiovascular system : Potential mech-anisms. Environ. Health Perspect. 2001; 109(4):523–527.

Sultan B, Labadi K, Guégan JF, Janicot S. Climate drives the meningitis epidemics onset in West Africa. Plos Med. 2005;2 (1): 0043–0049.

Diokhane AM, Jenkins GS, Manga N, Drame MS. Linkages between observed, modeled Saharan dust loading and meningitis in Senegal during 2012 and 2013. Int J Biometeorol. 2015;557–575.

Korgo B. Caractérisation optique et micro-physique des aérosols atmosphériques en zone urbaine ouest africaine : Application aux calculs du forçage radiatif à Ouagadougou. Universite de Ouagadougou; 2014.

Drame M, Bilal BO, Camara M, Sambou V, Gaye A. Impacts of aerosols on available solar energy at Mbour, Senegal. J. Renew. Sustain. Energy. 2012;4:1–13.

Drame MS. Caractérisation et impacts climatiques des aérosols en Afrique de l’ouest. Université Cheick Anta DIOP de Dakar; 2012.

Dankassoua M, Madougou S, Foulani AAA. Etude du rayonnement solaire global à Niamey de la période de pré- mousson et de la mousson de l ’ année 2013. Rev. des Energies Renouvelables. 2017;20: 131–146.

Bilal BO, Sambou V, Kébé CMF, Ndongo M, Ndiaye PA. Etude et modélisation du potentiel solaire du site de Nouakchott et de Dakar. J. des Sci. 2007;7:57–66.

Dankassoua M, Saïdou M, Yahaya S. Evaluation of solar potential at niamey : Study data of insolation from 2015 and 2016. 2017;394–411.

Drame MS, Camara M, Gaye AT. Simulation de l ’ impact des aérosols sur le rayonnement solaire à Mbour, Sénégal. La Météorologie. 2012;51–57.

Camille V. Etude de l’impact radiatif des aérosols dans la couche limite planetaire. Université de Versailles; 2007.

Holben BN, Eck TF, Slutsker I, Tanre D, Buis JP, Setzer A, Vermote E, Reagan JA, Kaufman YJ, Nakajima T, Lavenu F, Jankowiak I, Smirnov A. AERONET-A federated instrument network and data archive for aerosol characterization. Remote Sens. Environ. 1998;4257(98):1-16.

Dubovik O. Optimization of numerical inversion in photopolarimetric remote sensing. Kluwer Acad. Publ. Print. Netherlands. 2004;65–106.

Dubovik O, King D. A flexible inversion algorithm for retrieval of aerosol optical properties from Sun and sky radiance measurements. J. Geophys. Res. 2000; 105:20673–20696.

Dubovik O, Smirnov A, Holben BN, King MD, Kaufman YJ, Eck TF, Slutske I. Accuracy assessments of aerosol optical properties retrieved from Aerosol Robotic Network (AERONET) Sun and sky. Geophys. Res. 2000;105(8):9791–9806.

Dubovik O, Holben BN, Lapyonok T, Sinyuk A, Mishchenko MI, Yang P, Slutsker I. Non-spherical aerosol retrieval method employing light scattering by spheroids. Geophys. Res. Lett. 2002; 29(10):3–6.

Levy RC, Remer LA, Mattoo S, Vermote EF, Kaufman YJ. Second-generation operational algorithm: Retrieval of aerosol properties over land from inversion of Moderate Resolution Imaging Spectrora-diometer spectral reflectance. J. Geophys. Res. 2007;112:1–21.

Kaufman YJ, Tanr D, Remer LA, Vermote EF, Chu A. Operational remote sensing of tropospheric aerosol over land from EOS moderate resolution imaging spectrora-diometer After the launch of MODIS the distribution. J. Geophys. Res. 1997; 102(96):51–67.

Tanré D, Kaufman YJ, Herman M, Mattoo S. Remote sensing of aerosol properties over oceans using the MODIS / EOS spectral radiances. J. Geophys. Res. 1997; 102(3):16971-16988.

Remer LA, Kaufman YJ, Tanré D, Mattoo S, Chu DA, Martins JV, Li RR, Ichoku C, Levy RC, Kleidman RG, Eck TF, Vermote E, Holben BN. The MODIS aerosol algorithm, products, and validation. Am. Meteorol. Soc. 2005;62:947–973.

Hsu NC, Tsay S, King MD, Member S, Herman JR. Aerosol properties over bright-reflecting source regions. IEEE Trans. Geosci. Remote Sens. 2004;42(3):557–569.

Kabore B, Kam S, Ouedraogo GWP, Bathiébo DJ. Etude de l’évolution climatique au Burkina Faso de 1983 à 2012: Cas des villes de Bobo Dioulasso, Ouagadougou et Dori. Arab. J. Earth Sci. 2017;4(2):50–59.

Kerkouche K, Cherfa F, Arab AH, Bouchakour S, Abdeladim K, Bergheul K. Evaluation de l ’ irradiation solaire globale sur une surface inclinée selon différents modèles pour le site de Bouzaréah. Rev. des Energies Renouvelables. 201316:269–284.

Drame MS, Ceamanos X, Roujean JL, Boone A, Lafore JP, Carrer D, Geoffroy O. On the importance of aerosol composition for estimating incoming solar radiation: focus on the Western African stations of Dakar and niamey during the dry season. Atmosphere (Basel). 2015;6:1608–1632.

Derimian Y, Le J, Dubovik O, Chiapello I, Tanre D, Podvin T, Brogniez G, Holben BN. Radiative properties of aerosol mixture observed during the dry season 2006 over M’ Bour, Senegal (African Monsoon Multidisciplinary Analysis campaign). J. Geophys. Res. 2008;113:1–15.