Use of Sentinel-1 Data in Flood Mapping in the Buna River Area

Main Article Content

Freskida Abazaj
Gëzim Hasko


Floods are one of the disasters that cause many human lives and property. In Albania, most floods are associated with periods of heavy rainfall. In recent years, Synthetic Aperture Radar (SAR) sensors, which provide reliable data in all weather conditions and day and night, have been favored because they eliminate the limitations of optical images.

In this study, a flood occurred in the Buna River region in March 2018, was mapped using SAR Sentinel-1 data. The aim of this study is to investigate the potential of flood mapping using SAR images using different methodologies. Sentinel-1A / B SAR images of the study area were obtained from the European Space Agency (ESA).

Preprocessing steps, which include trajectory correction, calibration, speckle filtering, and terrain correction, have been applied to the images. RGB composition and the calibrated threshold technique have been applied to SAR images to detect flooded areas and the results are discussed here.

Flood, SAR image, RGB composite, pre-processing, thresholds technique

Article Details

How to Cite
Abazaj, F., & Hasko, G. (2020). Use of Sentinel-1 Data in Flood Mapping in the Buna River Area. International Journal of Environment and Climate Change, 10(10), 147-156.
Original Research Article


Po NL. Ecological response to and management of increased flooding caused by climate change. Philos. Trans. A Math. Phys. Eng. Sci. 2002;360:1497–1510.

European Environment Agency. Flood risks and environmental vulnerability; Exploring the synergies between floodplain restoration, water policies and thematic policies. European Environment Agency: Copenhagen, Denmark. 2016;9–15.

Carreño Conde F. De Mata Muñoz M. Flood monitoring based on the study of sentinel-1 SAR Images: The Ebro River Case Study. Water. AMA Style. 2019; 112454.


Merz B, Aerts J, Arnbjerg-Nielsen K, Baldi M, Becker A, Bichet A, Blöschl G, Bouwer LM, Brauer,A, Cio F, et al. Floods and climate: Emerging perspectives for flood risk assessment and management.Nat. Hazards Earth Syst. Sci. 2014;14:1921–1942.

Bioresita F, Puissant A, Stumpf A, Malet JF. Fusion of sentinel-1 and sentinel-2 image time series for permanent and temporary surface water mapping. Int. J. Remote Sens. 2019;40:9026–9049.

Shen X, Wang D, Mao K, Anagnostou E, Hong Y. Inundation extent mapping by synthetic aperture radar: A review. Remote. Sens. 2019;11:879.

Tomer ST, Al Bitar A, Sekhar M, Zribi M, Bandyopadhyay S, Sreelash K, Sharma AK, Corgne S, Kerr Y. Retrieval and multi-scale validation of soil moisture from multi-temporal SAR data in a semi-arid tropical region. Remote Sens. 2015;7:8128–8153.

Filion R, Bernier M, Paniconi C, Chokmani K, Melis M, Soddu A, Talazac M, Lafortune FX. Remote sensing for mapping soil moisture and drainage potential in semi-arid regions: Applications to the Campidano plain of Sardinia, Italy. Sci. Total Environ. 2016;573:862–876.

Zhang B, Wdowinski S, Oliver-Cabrera T, Koirala R, Jo MJ, Osmanoglu B. Mapping the extent and magnitude of sever flooding induced by hurricane IRMA with multi-temporal SENTINEL-1 SAR and insar observations. ISPRS-International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. 2018;2237-2244,


Cazals C, Rapinel S, Frison PL, Bonis A, Mercier G, Mallet C, Corgne S, Rudant JP. Mapping and characterization of hydrological dynamics in a coastal marsh using high temporal resolution Sentinel-1A images. Remote Sensing. 2016;8(7):570.

DOI: 10.3390/rs8070570

Torres R, Snoeij P, Geudtner D, Bibby D, Davidson M, Attema E, Potin P, Rommen B, Floury N, Brown M. GMES Sentinel-1 mission. Remote Sensing of Environment, 2012;120:9–24.


Bogdani M. Risk assessment from floodings in the rivers of Albania. Int. Conf. on Destructive Water, Anaheim, 1996;24-28:83-85.

Comprehensive review and outlook to Sentinel-1. Remote Sensing. 2014;6:4870–4906.


Nagler T, Rott H, Ripper E, Bippus G, Hetzenecker M. Advancements for snowmî. Sentinel-1-based flood mapping: A fully automated processing chain. International Journal of Remote Sensing. 2016;37(13):2990–3004.


Cazals C, Rapinel S, Frison PL, Bonis A, Mercier G, Mallet C, Corgne S, Rudant JP. 2016. Mapping and characterization of hydrological dynamics in a coastal marsh using high temporal resolution Sentinel-1A images. Remote Sensing 2016;8(7):570.

DOI: 10.3390/rs8070570

EO Browser; 2020.


Torres R, Snoeij P, Geudtner D, Bibby D, Davidson M, Attema E, Potin P, et al. GMES Sentinel-1 Mission. Remote Sensing of Environment. 2012;120:9–24.

DOI: 10.1016/j.rse.2011.05.028.

Psomiadis E. Flash flood area mapping utilizing Sentinel-1 radar data. In proceedings of the earth resources and environmental remote sensing/GIS Applications VII, Edinburgh, UK. 2016;26–29

DOI: 10.1117/12.2241055

Twele A, Cao WX, Plank S, Martinis S. Sentinel-1-based flood mapping: a fully automated processing chain. International Journal of Remote Sensing. 2016;37(13): 2990–3004.


Henry JB, Chastanet B, Fellah K, Desnos YL. Envisat multi-polarized ASAR data for flood mapping. International Journal of Remote Sensing. 2006;27(10):1921-1929.


Clement MA, Kilsb G, Moore P. Multi-temporal synthetic aperture radar flood mapping using change detection. Journal of Flood Risk Management. 2017;39:130- 152-168.


Manjusree R, Kumar LP, Bhatt CM, Rao GS, Bhanumurthy V. Optimization of threshold ranges for rapid flood inundation mapping by evaluating backscatter profiles of high incidence angle SAR images. International Journal of Disaster Risk Science. 2012;3(2):113–122.


SNAP. Sentinel Application Platform; 2018.


Singh P, Shree R. Analysis and effects of speckle noise in SAR images. In Advances in Computing, Communication, & Automation (Fall), ICACCA. 2016;2–6.

DOI: 10.1109/ICACCAF.2016.7748978

Miranda N, Meadows PJ. Radiometric calibration of S-1 Level-1 products generated by the S-1 IPF, ESA-EOPG-CSCOP-TN-0002; European Space Agency: Paris, France; 2015.

Senthilnath J, Handiru V, Rajendra R, Omkar SN, Mani V, Diwakar P. Integration of speckle de-noising and image segmentation using synthetic aperture radar image for flood extent extraction. J. Earth Syst. Sci. 2013;122:559–572.

Park JM, Song WJ, Pearlman WA. Speckle filtering of SAR images based on adaptive windowing. IEE Proc. Vis. Image Signal Process. 1999;146:191–197.

Borah SB, Sivasankar T, Ramya MNS, Raju PLN. Flood inundation mapping and monitoring in Kaziranga National Park, Assam using Sentinel-1 SAR data. Environ. Monit. Assess. 2018;190-520.

Ezzine A, Darragi F, Rajhi H, Ghatassi A. Evaluation of sentinel-1 data for flood mapping in the upstream of Sidi Salem dam (Northern Tunisia). Arab. J. Geosci. 2018;11:170.

García R, González C, De la Vega R, Valverde A, Seben E. Análisis del Comportamiento de Filtros de Reducción de Speckle en Imágenes ERS2-SAR; Teledetección y Desarrollo Regional; X Congreso de Teledetección: Cáceres, Spain. 2003;325–328.

Amitrano D, Guida R, Ruello G. Multitemporal SAR RGB Processing for Sentinel-1 GRD Products: Methodology and Applications. IEEE J. Select. Top. Appl. Earth Obs. Remote Sens. 2019;12: 1497–1507.

Tavus B, Kocaman S, Gokceoglu C, Nefeslioglu HA. Considerations on the use of sentinel-1 data in flood mapping in urban areas: Ankara (Turkey) 2018 floods. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2018;43(5):575–581.

Westerho RS, Kleuskens MPH, Winsemius HC, Huizinga HJ, Brakenridge GR, Bishop C. Automated global water mapping based on wide-swath orbital synthetic-aperture radar. Hydrol. Earth Syst. Sci. 2013;17:651–663.

Bioresita F, Puissant A, Stumpf A, Malet JP. A method for automatic and rapid mapping of water surfaces from Sentinel-1 imagery. Remote Sens. 2018; 10:217.

Pulvirenti L, Chini M, Pierdicca N, Guerriero L, Ferrazzoli P. Flood monitoring using multitemporal COSMO-SkyMed data: image segmentation and signature interpretation. Remote Sensing Environment. 2011;115(4):990–100.