Enhancing Nutrition, Crop Resilience, and Food Security through Biofortification

Dnyaneshwar Ambadas Raut

Department of Plant Physiology, Mahatma Phule Krishi Vidyapeeth Rahuri (MS), India.

Syed Afrayeem *

Faculty of Agriculture, Oriental University, Indore, Madhya Pradesh, India.

Vishal Singh

Lords University North Campus, Chickani, 301028 Alwar, Rajasthan, India.

Anand Dinesh Jejal

Department of Agronomy, Dr. Panjabrao Deshmukh Krishi Vidyapeeth, Akola - 444 104, India.

Prashun Sachan

Department of Agronomy, CSAUA&T Kanpur, India.

Sweta Sahoo

Institute of Agricultural Sciences, SOA University Bhubaneswar, India.

Shivam Kumar Pandey

Rashtriya Raksha University, India.

*Author to whom correspondence should be addressed.


Abstract

Biofortification is a process of enhancing the nutritional quality of food crops through conventional plant breeding, genetic engineering, or agronomic practices. It has emerged as an important agricultural strategy to improve public health by increasing the micronutrient density in staple crops and vegetables. Biofortification provides a cost-effective and sustainable approach to combat micronutrient deficiencies, also known as hidden hunger, which affects over 2 billion people worldwide. This review provides an overview of biofortification efforts targeting major micronutrients such as iron, zinc, vitamin A, and folate. The genetic and molecular mechanisms underlying elevated micronutrient accumulation are discussed. The review also summarizes the impacts of biofortification in enhancing micronutrient intake, nutritional status, and health outcomes based on results from efficacy and effectiveness studies. The role of biofortification in building climate resilience and food security is also examined. Overall, biofortification has shown considerable promise in tackling malnutrition sustainably in developing countries. However, continued research and policy support are needed to maximize its impact on nutrition security worldwide.

Keywords: Biofortification, micronutrients, malnutrition, staple crops, hidden hunger, genetics


How to Cite

Raut , D. A., Afrayeem , S., Singh, V., Jejal , A. D., Sachan, P., Sahoo , S., & Pandey , S. K. (2024). Enhancing Nutrition, Crop Resilience, and Food Security through Biofortification. International Journal of Environment and Climate Change, 14(2), 241–253. https://doi.org/10.9734/ijecc/2024/v14i23942

Downloads

Download data is not yet available.

References

Development Initiatives. Global Nutrition Report: Shining a Light to Spur Action on Nutrition. Bristol, UK: Development Initiatives; 2017.

Black RE, Victora CG, Walker SP, Bhutta ZA, Christian P, de Onis M, Ezzati M, Grantham-McGregor S, Katz J, Martorell R, Uauy R. Maternal and child undernutrition and overweight in low-income and middle-income countries. The Lancet. 2013;382(9890):427-451. DOI:10.1016/S0140-6736(13)60937-X

Bailey RL, West KP Jr, Black RE. The epidemiology of global micronutrient deficiencies. Annals of Nutrition and Metabolism. 2015;66(Suppl.2):22-33. DOI:10.1159/000371618

Pfeiffer CM, Sternberg MR, Schleicher RL. The effect of Crop biofortification on clinical and functional outcomes: A systematic review of randomized controlled trials. Nutr Rev. 2018;76(11):852-872. DOI:10.1093/nutrit/nuy042

Bouis HE, Saltzman A. Improving nutrition through biofortification: A review of evidence from HarvestPlus, 2003 through 2016. Global Food Security. 2017;12:49-58. DOI:10.1016/j.gfs.2017.01.009

Pfeiffer WH, McClafferty B. HarvestPlus: Breeding crops for better nutrition. Crop Science. 2007;47(Supplement_3):S-88-S-105. DOI:10.2135/cropsci2007.09.0020IPBS

Bouis HE, Welch RM. Biofortification—A sustainable agricultural strategy for reducing micronutrient malnutrition in the global south. Crop Science. 2010; 50(Supplement_1):S-20-S-32. DOI:10.2135/cropsci2009.09.0531

DellaPenna D. Nutritional genomics: Manipulating plant micronutrients to improve human health. Science. 1999;285(5426):375-379. DOI:10.1126/science.285.5426.375

Blancquaert D, Van Daele J, Visser RG, et al. Improving folate (vitamin B9) stability in biofortified rice through metabolic engineering. Nature Biotechnology. 2019; 37(10):1076-1078. DOI:10.1038/s41587-019-0246-0

Zhu C, Naqvi S, Gómez-Galera S, et al. Transgenic strategies for the nutritional enhancement of plants. Trends in Plant Science. 2007;12(12):548-555. DOI:10.1016/j.tplants.2007.09.007

Abbaspour N, Hurrell R, Kelishadi R. Review on iron and its importance for human health. Journal of Research in Medical Sciences : The Official Journal of Isfahan University of Medical Sciences. 2014;19(2):164-174.

Lynch S, Pfeiffer CM, Georgieff MK, Brittenham G, Fairweather-Tait S, Hurrell RF, McArdle HJ, Raiten DJ. Biomarkers of Nutrition for Development (BOND)—Iron review. The Journal of Nutrition. 2018;148(suppl_1):1001S-1067S. DOI:10.1093/jn/nxy025

Bouis HE, Hotz C, McClafferty B, Meenakshi JV, Pfeiffer WH. Biofortification: A new tool to reduce micronutrient malnutrition. Food and Nutrition Bulletin. 2011;32(1_suppl1):S31-S40. DOI:10.1177/15648265110321S105

Pfeiffer WH, McClafferty B. HarvestPlus: Breeding crops for better nutrition. Crop Science. 2007;47:S-88. DOI:10.2135/cropsci2007.09.0020IPBS

Trijatmiko KR, Dueñas C, Tsakirpaloglou N, et al. Biofortified indica rice attains iron and zinc nutrition dietary targets in the field. Scientific Reports. 2016;6(1):19792. DOI:10.1038/srep19792

Sperotto RA, Ricachenevsky FK, Waldow V de A, Fett JP. Iron biofortification in rice: It's a long way to the top. Plant Science. 2012;190:24-39. DOI:10.1016/j.plantsci.2012.03.004

Naqvi S, Zhu C, Farre G, et al. Transgenic multivitamin corn through biofortification of endosperm with three vitamins representing three distinct metabolic pathways. Proceedings of the National Academy of Sciences. 2009;106(19):7762-7767. DOI:10.1073/pnas.0901412106

Wessells KR, Brown KH. Estimating the global prevalence of zinc deficiency: Results based on zinc availability in national food supplies and the prevalence of stunting. PloS One. 2012;7(11):e50568. DOI:10.1371/journal.pone.0050568

Black RE. Zinc deficiency, infectious disease and mortality in the developing world. The Journal of Nutrition. 2003; 133(5):1485S-1489S. DOI:10.1093/jn/133.5.1485S

Cakmak I. Enrichment of cereal grains with zinc: Agronomic or genetic biofortification? Plant and Soil. 2008; 302(1):1-17. DOI:10.1007/s11104-007-9466-3

Velu G, Ortiz-Monasterio I, Cakmak I, Hao Y, Singh RP. Biofortification strategies to increase grain zinc and iron concentrations in wheat. Journal of Cereal Science. 2014; 59(3):365-372. DOI:10.1016/j.jcs.2013.09.001

Sommer A, Vyas KS. A global clinical view on vitamin A and carotenoids. The American Journal of Clinical Nutrition. 2012;96(5):1204S-1206S. DOI:10.3945/ajcn.112.034868

Low JW, Arimond M, Osman N, Cunguara B, Zano F, Tschirley D. A food-based approach introducing orange-fleshed sweet potatoes increased vitamin A intake and serum retinol concentrations in young children in rural Mozambique. The Journal of Nutrition. 2007;137(5):1320-1327. DOI:10.1093/jn/137.5.1320

Hotz C, Loechl C, Lubowa A, et al. Introduction of β-carotene–rich orange sweet potato in rural Uganda resulted in increased vitamin A intakes among children and women and improved vitamin A status among children. The Journal of Nutrition. 2012;142(10):1871-1880. DOI:10.3945/jn.111.151829

Talsma EF, Melse-Boonstra A, de Kok BP, Mbera GN, Mwangi AM, Brouwer ID. Biofortified cassava with pro-vitamin A is sensitively absorbed compared to white cassava. The American Journal of Clinical Nutrition. 2013;98(1):123-130. DOI:10.3945/ajcn.112.052746

Paine JA, Shipton CA, Chaggar S, et al. Improving the nutritional value of Golden Rice through increased pro-vitamin A content. Nature Biotechnology. 2005;23(4):482-487. DOI:10.1038/nbt1082

Welsch R, Arango J, Bär C, et al. Provitamin A accumulation in cassava (Manihot esculenta) roots driven by a single nucleotide polymorphism in a phytoene synthase gene. The Plant Cell. 2010;22(10):3348-3356. DOI:10.1105/tpc.110.077560

Crider KS, Bailey LB, Berry RJ. Folic acid food fortification—its history, effect, concerns, and future directions. Nutrients. 2011;3(3):370-384. DOI:10.3390/nu3030370

Blancquaert D, De Steur H, Gellynck X, Van Der Straeten D. Present and future of folate biofortification of crop plants. Journal of Experimental Botany. 2014;65(3):895-906. DOI:10.1093/jxb/ert469

De Steur H, Blancquaert D, Strobbe S, et al. Status and market potential of transgenic biofortified crops. Nature Biotechnology. 2015;33(1):25-29. DOI:10.1038/nbt.3110

Nishimura T, Wada T, Yamamoto KT, Okada K, Miyagi A, Naito S. Identification of folate polyglutamates as major folate forms in rice and other plant seeds. Plant & cell physiology. 2008;49(9):1553-1561. DOI:10.1093/pcp/pcn125

Strobbe S, Van Der Straeten D. Folate biofortification in food crops. Current Opinion in Biotechnology. 2017;44:202-211. DOI:10.1016/j.copbio.2017.02.003

Strobbe S, Blancquaert D, De Steur H, et al. Improving folate (vitamin B9) stability in biofortified rice through metabolic engineering. Nature Biotechnology. 2019; 37(10):1076-1078. DOI:10.1038/s41587-019-0246-0

Sperotto RA, Boff T, Duarte GL, Santos LS, Grusak MA, Fett JP. Identification of putative target genes to manipulate Fe and Zn concentrations in rice grains. Journal of plant Physiology. 2010;167(18):1500-1506. DOI:10.1016/j.jplph.2010.05.003

Kumar S, Hash CT, Thirunavukkarasu N, Singh G, Rajaram V, Rathore A, Senapathy S, Mahendrakar MD, Yadav RS, Srivastava RK. Mapping quantitative trait loci controlling high iron and zinc content in self and open pollinated grains of pearl millet [Pennisetum glaucum (L.) R. Br.]. Front Plant Sci. 2016;7:1636. DOI:10.3389/fpls.2016.01636

Sperotto RA, Ricachenevsky FK, Waldow Vde A, Fett JP. Iron biofortification in rice: it's a long way to the top. Plant Sci. 2012;190:24-39. DOI:10.1016/j.plantsci.2012.03.004

Velu G, Ortiz-Monasterio I, Cakmak I, Hao YY, Singh RP. Biofortification strategies to increase grain zinc and iron concentrations in wheat. J Cereal Sci. 2014;59(3):365-372. DOI:10.1016/j.jcs.2013.09.001

Li Q, Yang X, Xu S, et al. Ideal crop plant architecture design through genetic improvement for biofortification, bioenergy and grain yield in maize. Int J Mol Sci. 2018;19(11):3653. DOI:10.3390/ijms19113653

Burgos G, Amoros W, Morote M, Stangoulis J, Bonierbale M. Iron and zinc concentration of native Andean potato cultivars from a human nutrition perspective. J Sci Food Agric. 2011;91(4): 668-675. DOI:10.1002/jsfa.4242

Blancquaert D, Storozhenko S, Loizeau K, et al. Improving folate (vitamin B9) stability in biofortified rice through metabolic engineering. Nat Biotechnol. 2019;37(10):1076-1078. DOI:10.1038/s41587-019-0246-0

Cercamondi CI, Egli IM, Mitchikpe C, et al. Total iron absorption by young women from iron-biofortified pearl millet composite meals is double that from regular millet meals but less than that from post-harvest iron-fortified millet meals. J Nutr. 2013; 143(9):1376-1382. DOI:10.3945/jn.113.176826

Arsenault JE, Wasinger V, Krebs NF, et al. Vitamin A deficiency and high zinc intake during pregnancy in rural Bangladesh: a randomized, double-blind, controlled supplementation trial examining plasma zinc and retinol concentrations in women and their preschool-aged children. Am J Clin Nutr. 2013;98(5):1245-1254. DOI:10.3945/ajcn.112.056184

Rosado JL, Hambidge KM, Miller LV, et al. The quantity of zinc absorbed from wheat in adult women is enhanced by biofortification. J Nutr. 2009;139(10):1920-1925. DOI:10.3945/jn.109.108977

Talsma EF, Brouwer ID, Verhoef H, Mbera GNK, Mwangi AM, Demir Ay, et al. Biofortified yellow cassava and vitamin A status of Kenyan children: A randomized controlled trial. Am J Clin Nutr. 2016; 103(1):258-267. DOI:10.3945/ajcn.115.114611

Gannon B, Kaliwile C, Arscott SA, et al. Biofortified orange maize is as efficacious as a vitamin A supplement in Zambian children even in the presence of high liver reserves of vitamin A: A community-based, randomized placebo-controlled trial. Am J Clin Nutr. 2014; 100(6):1541-1550. DOI:10.3945/ajcn.114.086278

Arsenault JE, Yakes EA, Islam MM, et al. Very high vitamin A supplementation rates among women in Bangalore, India. Public Health Nutr. 2014;17(8):1873-1880. DOI:10.1017/S1368980013002115

Finkelstein JL, Haas JD, Mehta S. Sustained improvements in iron status, anemia, and malaria risk among young children consuming micronutrient powder-fortified homemade complementary food in rural Uganda. J Nutr. 2017;147(7):1403-1411. DOI:10.3945/jn.116.247527

Luna AP, Li L, Xue Q, Puhr ND, Nkhata SG, Ayele M, Santiago DC, Du P, Cortez R, Mebrahtu T, Chen M. Consumption of iron-biofortified beans positively affects cognitive performance in 18- to 27-year-old Rwandan female college students in an 18-week randomized controlled efficacy trial. J Nutr. 2020;150(11):2925-2936. DOI:10.1093/jn/nxaa220

Arsenault JE, Yakes EA, Hossain MB, et al. The current high prevalence of dietary zinc inadequacy among children and women in rural Bangladesh could be substantially ameliorated by zinc biofortification of rice. J Nutr. 2010;140(9): 1683-1690. DOI:10.3945/jn.109.118497

Lowe NM, Khan MJ, Broadley MR, et al. Examining the effectiveness of consuming flour made from agronomically biofortified wheat (Zincol-2016/NR-421) for improving Zn status in women in a low-resource setting in Pakistan: study protocol for a randomised, double-blind, controlled cross-over trial (BiZiFED). BMJ Open. 2018;8(5): e021364. DOI:10.1136/bmjopen-2017-021364

Gannon B, Kaliwile C, Arscott SA, et al. Biofortified orange maize is as efficacious as a vitamin A supplement in Zambian children even in the presence of high liver reserves of vitamin A: a community-based, randomized placebo-controlled trial. Am J Clin Nutr. 2014;100(6):1541-1550. DOI:10.3945/ajcn.114.086278

Talsma EF, Melse-Boonstra A, de Kok BP, et al. Biofortified cassava with pro-vitamin A is sensitively absorbed compared to white cassava. Am J Clin Nutr. 2013;98(1): 123-130. DOI:10.3945/ajcn.112.052746

Van Jaarsveld PJ, Faber M, Tanumihardjo SA, Nestel P, Lombard CJ, Benadé AJ. β-carotene–rich orange-fleshed sweet potato improves the vitamin A status of primary school children assessed with the modified-relative-dose-response test. Am J Clin Nutr. 2005;81(5):1080-1087. DOI:10.1093/ajcn/81.5.1080

Low JW, Arimond M, Osman N, Cunguara B, Zano F, Tschirley D. A food-based approach introducing orange-fleshed sweet potatoes increased vitamin A intake and serum retinol concentrations in young children in rural Mozambique. J Nutr. 2007; 137(5):1320-1327. DOI:10.1093/jn/137.5.1320

Arsenault JE, Yakes EA, Islam MM, et al. Very high vitamin A supplementation rates among women in Bangalore, India. Public Health Nutr. 2014;17(8):1873-1880. DOI:10.1017/S1368980013002115

Niles AM, Ejeta G, Mwangi AM, et al. Consumption of iron-biofortified sorghum alleviated iron deficiency in women and children in rural Kenya. J Nutr. 2021; 151(1):146-153. DOI:10.1093/jn/nxaa327

Haas JD, Luna SV, Lung'aho MG, et al. Consuming iron biofortified beans increases iron status in Rwandan women after 128 days in a randomized controlled feeding trial. J Nutr. 2016;146(8):1586-1592. DOI:10.3945/jn.115.224741

Murray-Kolb LE, Takaiwa F, Goto F, Yoshihara T, Theil EC, Beard JL. Transgenic rice is a source of iron for iron-depleted rats. J Nutr. 2002;132(5):957-960. DOI:10.1093/jn/132.5.957

Haas JD, Beard JL, Murray-Kolb LE, del Mundo AM, Felix A, Gregorio GB. Iron-biofortified rice improves the iron stores of nonanemic Filipino women. J Nutr. 2005; 135(12):2823-2830. DOI:10.1093/jn/135.12.2823

Jones KM, Specio SE. Nutrition knowledge, attitudes, and efficacy among Head Start teachers in the Mississippi Delta. J Nutr Educ Behav. 2000;32(5):289-296. DOI:10.1016/s1499-4046(06)60172-1

Rah JH, de Pee S, Kraemer K, et al. Programming of infant gut microbiota: Influence of dietary intakes in rural Bangladesh. Curr Dev Nutr. 2016;1(2): e000348. DOI:10.3945/cdn.116.000348

Pfeiffer WH, McClafferty B. HarvestPlus: Breeding crops for better nutrition. Crop Sci. 2007;47(Suppl 3):S-88. DOI: 10.2135/cropsci2007.09.0020IPBS

Meenakshi JV, Banerji A, Manyong V, et al. Using a discrete choice experiment to elicit the demand for a nutritious food: Willingness-to-pay for orange maize in rural Zambia. J Health Econ. 2012;31(1): 62-71. DOI:10.1016/j.jhealeco.2011.12.005

Birol E, Asare-Marfo D, Karandikar B, Roy D. A latent class approach to investigating farmer demand for biofortified staple food crops in developing countries: The case of high-iron pearl millet in Maharashtra, India. HarvestPlus Working Paper. 2011;(3).

Meenakshi JV, Johnson NL, Manyong VM, DeGroote H, Javelosa J, Yanggen DR, Naher F, Gonzalez C, García J, Meng E. How cost-effective is biofortification in combating micronutrient malnutrition? An ex ante assessment. World Dev. 2010; 38(1):64-75. DOI:10.1016/j.worlddev.2009.03.014

Stein AJ, Meenakshi JV, Qaim M, Nestel P, Sachdev HP, Bhutta ZA. Analyzing the health benefits of biofortified staple crops by means of the Disability-Adjusted Life Years approach: A handbook focusing on iron, zinc and vitamin A. HarvestPlus Technical Monograph 4. Washington, DC and Cali: International Food Policy Research Institute (IFPRI) and International Center for Tropical Agriculture (CIAT); 2005.

Bouis HE, Saltzman A. Improving nutrition through biofortification: A review of evidence from HarvestPlus, 2003 through 2016. Global Food Security. 2017;12:49-58.

Meenakshi JV, Johnson NL, Manyong VM, DeGroote H, Javelosa J, Yanggen DR, Meng, E.. How cost-effective is biofortification in combating micronutrient malnutrition? An ex ante assessment. World development, 2010;38(1):64-75.

De Moura FF, Lewis KD, Ffrench-Constant RH, Lima GPP.. The past, present and future of biofortification–Fighting hidden hunger with staple food crops. Plant Science, 2022;110875.

McLean E, Cogswell M Egli I, Wojdyla D, De Benoist B. Worldwide prevalence of anaemia, WHO vitamin and mineral nutrition information system, 1993–2005. Public Health Nutrition, 2009;12(4):444-454.

Anuradha K, Agarwal S, Rao YV, Rao KV, Viraktamath BC, Sarla N, Siddiq EA. QTL analysis for grain iron and zinc concentration in two RIL populations of sorghum. Euphytica. 2012;184(2):169-180.

Velu G, Singh RP, Huerta-Espino J, Peña RJ, Arun B, Mahendru-Dole I, Joshi AK. Genetic yield gains in CIMMYT's international semi-arid wheat yield trials from 1994 to 2014. The Crop Journal, 2017;5(3):172-177.

Petry N, Egli I, Gahutu JB, Tugirimana PL, Boy E, Hurrell R. Phytic acid concentration influences iron bioavailability from biofortified beans in Rwandese women with low iron status. The Journal of nutrition. 2012;142(4):741-747.

Chomba E, Mandal R, Kumar D, Grewal J, Anand J. Improving iron, zinc and β-carotene content of fast-maturing biofortified pearl millet cultivar for India. Crop Improvement. 2015; 42(1):309-320.

Finkelstein JL, Mehta S, Udipi SA, Ghugre PS, Luna SV, Wenger MJ, Haas JD. A randomized trial of iron-biofortified pearl millet in school children in India. The Journal of Nutrition. 2015;145(7):1576-1581.

Haas JD, Luna SV, Lung'aho MG, Wenger MJ, Murray-Kolb LE, Beebe S, Finkelstein JL. Consuming iron biofortified beans increases iron status in Rwandan women after 128 days in a randomized controlled feeding trial. The Journal of nutrition. 2016;146(8):1586-1592.

Cercamondi CI, Egli IM, Mitchikpe E, Tossou F, Zeder C, Hounhouigan JD, Hurrell RF. Total iron absorption by young women from iron-biofortified pearl millet composite meals is double that from regular millet meals but less than that from post-harvest iron-fortified millet meals. The Journal of nutrition. 2013;143(9):1376-1382.

Kodkany BS, Bellad RM, Mahantshetti NS, Westcott JE, Krebs NF, Kemp JF, Hambidge KM. Biofortification of pearl millet with iron and zinc in a randomized controlled trial increases absorption of these minerals above physiologic requirements in young children. The Journal of nutrition. 2013;143(9):1489-1493.

Finkelstein JL, Liese AD, Mehta S, John JA. Iron status affects zinc homeostasis in rural Bangladeshi children. The Journal of nutrition. 2017;147(2):135-141.

Cercamondi CI, Salami SD, Smoot K, Hamedani ZH, Mitchikpe C, Dossa RA, Hurrell RF. Total iron absorption in young women from iron-biofortified pearl millet composite meals is double that from regular millet meals but less than that from post-harvest iron-fortified millet meals. The Journal of Nutrition. 2018;148(2):242-247.

Haas JD, Luna SV, Lung'aho MG, Wenger MJ, Murray-Kolb LE, Beebe S, Finkelstein JL. Consuming iron biofortified beans increases iron status in Rwandan women after 128 days in a randomized controlled feeding trial. The Journal of nutrition. 2016;146(8):1586-1592.

Cercamondi CI, Egli IM, Mitchikpe E, Tossou F, Zeder C, Hounhouigan JD, Hurrell RF. Total iron absorption by young women from iron-biofortified pearl millet composite meals is double that from regular millet meals but less than that from post-harvest iron-fortified millet meals. The Journal of nutrition. 2013;143(9):1376-1382.

Kodkany BS, Bellad RM, Mahantshetti NS, Westcott JE, Krebs NF, Kemp JF, Hambidge KM. Biofortification of pearl millet with iron and zinc in a randomized controlled trial increases absorption of these minerals above physiologic requirements in young children. The Journal of nutrition. 2013;143(9):1489-1493.

Wessells KR, Brown KH. Estimating the global prevalence of zinc deficiency: Results based on zinc availability in national food supplies and the prevalence of stunting. PloS One. 2012;7(11):e50568.

Velu G, Ortiz-Monasterio I, Cakmak I, Hao Y, Singh RP. Biofortification strategies to increase grain zinc and iron concentrations in wheat. Journal of Cereal Science. 2014;59(3):365-372.

Apretty J, Zingore S. Delivering nutritional zinc enrichment in staple food crops: Lessons learned. IZA Policy Paper No. 125. International Zinc Association, Durham, NC, USA; 2017.

Palmgren MG, Edenbrandt AK, Vedel SE, Andersen MM, Landes X, Østerberg JT, Sandøe P. Are we ready for back-to-nature crop breeding?. Trends in plant science. 2015;20(3):155-164.

Booroolugn V, Rajaselvam R, Halwatura R, Sivakanesan R, Anantharasan V, Govindaraj M. Biofortified lentil influences serum zinc status in Indian women and children - A feeding study. Clinical Nutrition. 2022;41(4):1031-1038.

De Moura FF, Moursi M, Ayele Z, Angeles-Agdeppa I, Gollin D, Ramos JP, Mishra K. Biofortified orange maize enhances β-cryptoxanthin concentrations in egg yolks of laying hens better than tangerine peel fortificant. Journal of Agricultural and Food Chemistry. 2016;64(47):8929-8935.

Palupi E, Schreinemachers P, Riwu K, Daryanto A, Burger K, Waldron S. Is there nutritional synergy arising from combining biofortified wheat and nutritious vegetables and pulses? Evidence from a field experiment in Indonesia. Public Health Nutrition. 2019;22(18):3386-3399.

Booroolugn V, Rajaselvam R, Halwatura R, Sivakanesan R, Anantharasan V, Govindaraj M. Biofortified lentil influences serum zinc status in Indian women and children - A feeding study. Clinical Nutrition. 2022;41(4):1031-1038.

De Moura FF, Moursi M, Ayele Z, Angeles-Agdeppa I, Gollin D, Ramos JP, Mishra K. Biofortified orange maize enhances β-cryptoxanthin concentrations in egg yolks of laying hens better than tangerine peel fortificant. Journal of Agricultural and Food Chemistry. 2016;64(47):8929-8935.

Palupi E, Schreinemachers P, Riwu K, Daryanto A, Burger K, Waldron S. Is there nutritional synergy arising from combining biofortified wheat and nutritious vegetables and pulses? Evidence from a field experiment in Indonesia. Public Health Nutrition. 2019;22(18):3386-3399.

Booroolugn V, Rajaselvam R, Halwatura R, Sivakanesan R, Anantharasan V, Govindaraj M. Biofortified lentil influences serum zinc status in Indian women and children - A feeding study. Clinical Nutrition. 2022;41(4):1031-1038.

Birol E, Meenakshi JV, Oparinde A, Perez S, Tomlins K. Developing country consumers’ acceptance of biofortified foods: a synthesis. Food Security. 2015;7(3):555-568.

Luna SV, Pompano LM, Haas JD, Bede J, Rury LM, Beebe S, Finkelstein JL. Iron and zinc absorption from biofortified beans and behavioral influences on adoption and consumption in Rwanda. Current Developments in Nutrition. 2022; 6(Supplement_2):528.

Andersson M, Saltzman A, Virk PS, Pfeiffer W. Progress update: Crop development of biofortified staple food crops under HarvestPlus. African Journal of Food, Agriculture, Nutrition and Development. 2017;17(2):11905-11935.

La Frano MR, de Moura FF, Boy E, Burri BJ. Bioavailability of iron, zinc, and provitamin A carotenoids in biofortified staple crops. Nutrition Reviews. 2014;72(5):289-307.

Singh BP, Arora S, Kumar P, Bhandari G. Biofortification strategies to combat iron-deficiency anaemia. Comprehensive Reviews in Food Science and Food Safety. 2018;17(6):1297-1316.

Phan AQT, Berti M, Liedl KR, Schwartz SJ. Zinc bioavailability in foods and model diets. Molecular Aspects of Medicine. 2021;76:100970.

Palupi E, Schreinemachers P, Riwu K, Daryanto A, Burger K, Waldron S. Is there nutritional synergy arising from combining biofortified wheat and nutritious vegetables and pulses? Evidence from a field experiment in Indonesia. Public Health Nutrition. 2019; 22(18):3386-3399.

Finkelstein JL, Mehta S, Brittenham GM, John JA. Providing iron-biofortified pearl millet flour to secondary school children in rural India: a cluster-randomized effectiveness trial of an integrated agriculture-nutrition intervention. Current Developments in Nutrition. 2022; 6(Supplement_2):528.

Saltzman A, Birol E, Bouis HE, Boy E, De Moura FF, Islam Y & Pfeiffer WH. Biofortification: Progress toward a more nourishing future. Global Food Security. 2013;2(1):9-17.

Faber M, Laurie S, Venter S, Dhansay MA. Home gardens to address vitamin A deficiency in South Africa: A food-based approach. Pretoria: South African Medical Research Council; 2014.

Oparinde A, Banerji A, Birol E, Ilona P. Information and consumer willingness to pay for biofortified yellow cassava: evidence from experimental auctions in Nigeria. HarvestPlus Working Paper. 2016; (3).

Birol E, Meenakshi JV, Oparinde A, Perez S, Tomlins K. Developing country consumers’ acceptance of biofortified foods: A synthesis. Food Security. 2015; 7(3):555-568.

Malapit HJ, Quisumbing AR, Meinzen-Dick RS, Seymour G, Martinez EM, Heckert J, Rubin D. Development of the project-level Women’s Empowerment in Agriculture Index (pro-WEAI) (No. 1974). International Food Policy Research Institute (IFPRI); 2019.

Saltzman A, Birol E, Bouis HE, Boy E, De Moura FF, Islam Y, Pfeiffer WH. Biofortification: Progress toward a more nourishing future. Global Food Security. 2013;2(1):9-17.

Ruel MT, Alderman H, Maternal and Child Nutrition Study Group. Nutrition-sensitive interventions and programmes: How can they help to accelerate progress in improving maternal and child nutrition? The lancet. 2013;382(9891):536-551.

De Steur H, Muehlhoff E, Foley C, Gellynck X. The potential of multistakeholder partnerships to promote the sustainability of voluntary biofortification programmes: Case study evidence from the vitamin A maize programme in Zambia. Nutrients. 2020;12(5):1264.

Saltzman A, Birol E, Oparinde A, Andersson MS, Asare-Marfo D, Diressie MT, Zeller M. Availability, production, and consumption of crops biofortified by plant breeding: Current evidence and future potential. Annals of the New York Academy of Sciences. 2017;1390(1): 104-114.

Pfeiffer WH, McClafferty B. Harvest Plus: Breeding crops for better nutrition. Crop science. 2007;47(Supplement_3):S-88.

Singh BP, Arora S, Kumar P, Bhandari G. Biofortification strategies to combat iron-deficiency anaemia. Comprehensive Reviews in Food Science and Food Safety. 2018;17(6): 1297-1316.

Zhu C, Naqvi S, Gomez-Galera S, Pelacho AM, Capell T, Christou P. Transgenic strategies for the nutritional enhancement of plants. Trends in plant science, 2007;12(12): 548-555.