A Brief Overview of Technologies in Automated Agriculture: Shaping the Farms of Tomorrow

Ritik Raj *

Department of BPP & BC, CBS&H, Dr RPCAU, Pusa, Samastipur, Bihar, 848125, India.

Shailesh Kumar

Department of BPP & BC, CBS&H, Dr RPCAU, Pusa, Samastipur, Bihar, 848125, India.

Sudhanand Prasad Lal

Department of Agricultural Extension Education, RPCAU, Pusa, Bihar-848125, India.

Hemlata Singh

Department of BPP & BC, CBS&H, Dr RPCAU, Pusa, Samastipur, Bihar, 848125, India.

Jyostnarani Pradhan

Department of BPP & BC, CBS&H, Dr RPCAU, Pusa, Samastipur, Bihar, 848125, India.

Yash Bhardwaj

Department of BPP & BC, CBS&H, Dr RPCAU, Pusa, Samastipur, Bihar, 848125, India.

*Author to whom correspondence should be addressed.


Abstract

As global population continues to grow, there is an increasing need for innovative solutions to enhance agricultural productivity, efficiency, and sustainability. To meet increasing population demand, agricultural production must be doubled. The global population is projected to rise by almost two billion individuals within the next three decades. With global challenges such as population growth, climate change, and resource formation, automation in farming practices is one of the key driving forces behind this revolution. Robotics, coupled with artificial intelligence (AI) and advanced data analytics, are transformative solutions for precision farming and smart farming technologies. These technologies enable continuous and efficient farming operations and provide detailed monitoring at a plant-by-pant level, optimizing resource use and reducing the environmental footprint. Technological advancements have led to the development of various robotic systems, including agricultural grippers and autonomous machinery, which are integral to the automation of farming tasks, from sowing to harvesting. However, the adoption of such technologies is not without challenges. High initial investment costs, connectivity issues, and data security are some of the barriers that need to be addressed. The potential benefits of reduced operational costs, improved crop quality, and enhanced farm output make it a promising solution for the future of farming. In this article, we discuss the multifaceted role of robotics in modern agriculture by exploring both technological advancements and challenges to widespread adoption.

Keywords: Agricultural productivity, artificial intelligence (AI), automation in agriculture, robotics, sustainability, technological advancement


How to Cite

Raj, Ritik, Shailesh Kumar, Sudhanand Prasad Lal, Hemlata Singh, Jyostnarani Pradhan, and Yash Bhardwaj. 2024. “A Brief Overview of Technologies in Automated Agriculture: Shaping the Farms of Tomorrow”. International Journal of Environment and Climate Change 14 (7):181-209. https://doi.org/10.9734/ijecc/2024/v14i74263.

Downloads

Download data is not yet available.

References

Rai AKMJ, Kumar N, Katiyar D, Singh O, Bhojendra, Sreekumar G, Verma P. Unlocking productivity potential: The promising role of agricultural robots in enhancing farming efficiency. International Journal of Plant and Soil Science. 2023;35(18):624–633.

Available:https://doi.org/10.9734/ijpss/2023/v35i183327

Sundararajan N, Habeebsheriff HS, Dhanabalan K, Cong VH, Wong LS, Rajamani R, Dhar BK. Mitigating global challenges: Harnessing green synthesized nanomaterials for sustainable crop production systems. Global Challenges (Hoboken, NJ). 2023;8(1):2300187.

Available:https://doi.org/10.1002/gch2.202300187

Reddy NV, Reddy AV, Pranavadithya S, Kumar JJ. A critical review on agricultural robots. International Journal of Mechanical Engineering and Technology (IJMET). 2016;7(4):183-188.

Available:https://iaeme.com/MasterAdmin/Journal_uploads/IJMET/VOLUME_7_ISSUE_4/IJMET_07_04_018.pdf

Revolutionizing Precision Agriculture: A Comprehensive Review of Innovative Technologies and Application in Digital Farming - Bhavya Venugopal, Emerson Elgin Fernandez, Karthik Shekhar, Krishnanunni VS, Lekshmi P Govind – IJFMR. 2024;6(1).

DOI: 10.36948/ijfmr.2024.v06i01.12825

Krishnan S, Swarna BHS. Robotics, IOT, and AI in the Automation of Agricultural Industry: A Review. IEEE Bangalore Humanitarian Technology Conference (B-HTC), Vijiyapur, India. 2020;1-6.

DOI: 10.1109/B-HTC50970.2020.9297856

Charles Oluwaseun Adetunji, Daniel Ingo Hefft, Olaniyan T. Olugbemi, Chapter 17 - Agribots: A gateway to the next revolution in agriculture,Editor(s): Ajith Abraham, Sujata Dash, Joel JPC. Rodrigues, Biswaranjan Acharya, Subhendu Kumar Pani, In Intelligent Data-Centric Systems,AI, Edge and IoT-based Smart Agriculture, Academic Press. 2022;301-311. ISBN 9780128236949.

Available:https://doi.org/10.1016/B978-0-12-823694-9.00007-4

Sivasangari AK, Teja GS, Ajitha P, Gomathi RM, Vignesh. Revolutionizing Agriculture: Developing Autonomous Robots for Precise Farming. International Conference on Inventive Computation Technologies (ICICT), Lalitpur, Nepal. 2023;1461-1468. DOI: 10.1109/ICICT57646.2023.10134507

Karthikeyan D, Pandian DS. Science and technology in the modern agricultural sector: An overview. International Journal of Advanced Research in Science, Communication and Technology (IJARSCT). 2021;7(2). DOI: 10.48175/IJARSCT-1793

Gnanabai BM, Meena Rani S. Resisting modern agricultural practices and urge to practice sustainable agriculture and food security in Barbara Kingsolver’s prodigal summer. Journal of Advanced Zoology. 2023;44(3):1207–1214. Available:https://doi.org/10.17762/jaz.v44i3.1385

NSYRAG, Saba U, Muskan A, Bhattacharjee G. The Impact of Machine Learning in Agriculture: Revolutionizing Farming Practices. Journal of Big Data Analytics and Business Intelligence. 2024;1(1). Available:https://doi.org/10.46610/JoBDABI.2024.v01i01.003

Ali-Кhusein, Urquhart. Present and future applications of robotics and automations in agriculture. Journal of Robotics Spectrum. 2023;1:047-056. DOI: 10.53759/9852/JRS202301005

Basri R, Islam F, Shorif SB, Uddin MS. Robots and drones in agriculture: A Survey. In: Uddin MS, Bansal JC. (Eds) Computer vision and machine learning in agriculture. Algorithms for Intelligent Systems. Springer, Singapore; 2021. Available:https://doi.org/10.1007/978-981-33-6424-0_2

Ponnusamy V, Natarajan S. Precision agriculture using advanced technology of iot, unmanned aerial vehicle, augmented reality, and machine learning. In: Gupta D, Hugo C. De Albuquerque V, Khanna A, Mehta PL. (eds) Smart Sensors for Industrial Internet of Things. Internet of Things. Springer, Cham; 2021. Available:https://doi.org/10.1007/978-3-030-52624-5_14

Tangkesalu D, Pedro JC, Tooy D, Judijanto L, Saprudin S. Precision agriculture: Integrating technology for enhanced efficiency and sustainability in crop management. Global International Journal of Innovative Research. 2023;1(3):213–219. Available:https://doi.org/10.59613/global.v1i3.37

Yépez-Ponce DF, Salcedo JV, Rosero-Montalvo P, Sanchis J. Mobile robotics in smart farming: Current trends and applications. Frontiers in Artificial Intelligence. 2023;6.

DOI: 10.3389/frai.2023.1213330

Eastwood CR, Rue BD, Edwards JP, Jago J. Responsible robotics design–A systems approach to developing design guides for robotics in pasture-grazed dairy farming. Frontiers in Robotics and AI. 2022;9. DOI: 10.3389/frobt.2022.914850

Maravarman M, Qureshi SG, Krishnamoorthy V, Singh G, Rallapalli S, Boopa SB. Integration of Precision Agriculture Technology, IOT Sensors, and System Efficiency for Sustainable Farming Practices. In Sharma S, Prakash A, Sugumaran V. (Eds.), Technological Advancements in Data Processing for Next Generation Intelligent Systems . IGI Global. 2024;141-168.

Available:https://doi.org/10.4018/979-8-3693-0968-1.ch006

Adewusi AO, Asuzu OF, Olorunsogo T, Iwuanyanwu C, Adaga E, Daraojimba DO. AI in precision agriculture: A review of technologies for sustainable farming practices. World Journal of Advanced Research and Reviews (WJARR). 2024;21(1):2276–2285. DOI: 10.30574/wjarr.2024.21.1.0314

Hussein AH, Jabbar KA, Mohammed A, Jasim L. Harvesting the Future: AI and IOT in Agriculture. International Conference on Smart Technologies and Applied Research (STAR'2023). E3S Web of Conferences. 2024;477:7. Available:https://doi.org/10.1051/e3sconf/202447700090

Rao MT, Anil B, Siddhartha G, Shyam Y, Rao BP. Smart farming decision support system for precision agriculture. Journal of Nonlinear Analysis and Optimization. 2024;15(1).

Available:http://doi.org/10.36893/JNAO.2024.V15101.1751-1758

Eaton R, Katupitiya J, Siew KW, Howarth B. Autonomous Farming: Modeling and Control of Agricultural Machinery in a Unified Framework. 15th International Conference on Mechatronics and Machine Vision in Practice, Auckland, New Zealand. 2008;499-504.

DOI: 10.1109/MMVIP.2008.4749583

Auat Cheein FA, Carelli R. Agricultural Robotics: Unmanned Robotic Service Units in Agricultural Tasks. In IEEE Industrial Electronics Magazine. 2013;7(3):48-58.

Available:10.1109/MIE.2013.2252957

Ikram K, Buttar NA, Waqas MM, Muthmainnah M, Omer MM, Niaz Y, Khang A. Robotic innovations in agriculture: Maximizing production and sustainability. In A. Khang (Ed.), Handbook of Research on AI-Equipped IOT Applications in High-Tech Agriculture . IGI Global. 2023;131-154.

Available:https://doi.org/10.4018/978-1-6684-9231-4.ch007

Bergerman M, Van Henten E, Billingsley J, Reid J, Mingcong D. IEEE Robotics and Automation Society Technical Committee on Agricultural Robotics and Automation [TC Spotlight]. In IEEE Robotics and Automation Magazine. 2013;20(2):20-125. DOI: 10.1109/MRA.2013.2255513

Billingsley J. (Ed.). Robotics and automation for improving agriculture (1st ed.). Burleigh Dodds Science Publishing; 2019. Available:https://doi.org/10.1201/9780429266737

Perez-Ruiz M, Slaughter DC, Gliever C, Upadhyaya SK. Tractor-based Real-time Kinematic-Global Positioning System (RTK-GPS) guidance system for geospatial mapping of row crop transplant. Biosystems Engineering. 2012;3(1):64-71. Available:https://doi.org/10.1016/j.biosystemseng.2011.10.009

Slaughter DC, Giles DK, Downey D. Autonomous robotic weed control systems: A review. Computers and Electronics in Agriculture. 2008;61(1):63-78. ISSN 0168-1699.

Available:https://doi.org/10.1016/j.compag.2007.05.008

Ali MH, Jakirul Sarker M, Rahman MS, Rabbi F, Hossen MS, Alomgir Kabir M. Design and Development of a GPS-Guided Spray Machine for Reducing Pesticide use on Agricultural Land in Bangladesh. IEEE 12th Symposium on Computer Applications and Industrial Electronics (ISCAIE), Penang, Malaysia. 2022;66-70. DOI: 10.1109/ISCAIE54458.2022.9794549

Rakibuzzaman M, Islam A, Amin MA, Khan MMR, Rahman MS. Design and fabrication of an agricultural spraying machine using a knapsack sprayer. IUBAT Review. 2023; 6(1):88–99.

Available:https://doi.org/10.3329/iubatr.v6i1.67234

Faiçal S, Pessin G, Filho GPR, Carvalho ACPLF, Furquim G, Ueyama J. Fine-Tuning of UAV control rules for spraying pesticides on crop fields. IEEE 26th International Conference on Tools with Artificial Intelligence, Limassol, Cyprus. 2014;527-533. DOI: 10.1109/ICTAI.2014.85

Thirupathi P, Karthik B, Sushanth B, Sameen S, Anusha K. Embedded system – based pesticides spraying robot. International Journal of Advanced Research in Science, Communication and Technology (IJARSCT). 2024;4(7):407-412. DOI:10.48175/IJARSCT-17863

Manunayaka G, Ganesamoorthi S. Knowledge of vegetable growers on the effects of agricultural chemicals. International Journal of Environment and Climate Change. 2023; 13(10):784–790. Available:https://doi.org/10.9734/ijecc/2023/v13i102716

Patel D, Gandhi MHS, Darji AD. Design of an autonomous agriculture robot for real time weed detection using CNN. AVES 2021 conference; 2022. Available:https://doi.org/10.48550/arxiv.2211.12077

Patel D, Gandhi M, Shankaranarayanan H, Darji AD. Design of an autonomous agriculture robot for real-time weed detection using CNN. In: Darji AD, Joshi D, Joshi A, Sheriff R. (eds) Advances in VLSI and Embedded Systems. Lecture Notes in Electrical Engineering. Springer, Singapore. 2023;962. Available:https://doi.org/10.1007/978-981-19-6780-1_13

Dash S, Sarkar S, Tripathy HP, Pattanaik P, Patnaik S. Robotics in weed management: A new paradigm in agriculture. International Conference on Electronic Information Technology and Smart Agriculture (ICEITSA), Huaihua, China. 2021;561-564. DOI: 10.1109/ICEITSA54226.2021.00111.

Dwivedi N, Kumar D, Suryavanshi P. Precision farming techniques for sustainable weed management. Emergent Life Sciences Research. 2022;8(2):142-149. Available:https://doi.org/10.31783/elsr.2022.82142149

Kondoyanni M, Loukatos D, Maraveas C, Drosos C, Arvanitis KG. Bio-inspired robots and structures toward fostering the modernization of agriculture. Biomimetics. 2022;7(2):69. Available:https://doi.org/10.3390/biomimetics7020069

Alba OS, Syrovy LD, Duddu HS, Shirtliffe SJ. Increased seeding rate and multiple methods of mechanical weed control reduce weed biomass in a poorly competitive organic crop. Field Crops Research. 2020;245:107648. Available:https://doi.org/10.1016/j.fcr.2019.107648

Rueda-Ayala V, Rasmussen J, Gerhards R. Mechanical Weed Control. In: Oerke EC, Gerhards R, Menz G, Sikora R. (eds) Precision crop protection - the challenge and use of heterogeneity. Springer, Dordrecht; 2010. Available:https://doi.org/10.1007/978-90-481-9277-9_17

Nørremark M, Griepentrog HW, Nielsen J, et al. Evaluation of an autonomous GPS-based system for intra-row weed control by assessing the tilled area. Precision Agric. 2012;13:149–162.

Available:https://doi.org/10.1007/s11119-011-9234-5

Saber MN, Burks TF, Macdonald GE, Lee WS, Salvador GA. An automated mechanical weed control system for organic row crop production. American Society of Agricultural and Biological Engineers (ASABE), Paper number. 2013;131593595. Available:https://doi.org/10.13031/aim.20131593595

Gerhards R, Andújar Sanchez D, Hamouz P, Peteinatos GG, Christensen S, Fernandez-Quintanilla C. Advances in site-specific weed management in agriculture—A review. Weed Research. 2022;62:123–133. Available:https://doi.org/10.1111/wre.12526

Van der weide RY, Bleeker PO, Achten VTJM, Lotz LAP, Fogelberg F, Melander B. Innovation in mechanical weed control in crop rows. Weed Research. 2008;48:215-224.

Available:https://doi.org/10.1111/j.1365-3180.2008.00629.x

Tardif-Paradis C, Simard MJ, Leroux GD, Panneton B, Nurse RE, Vanasse A. Effect of planter and tractor wheels on row and inter-row weed populations. Crop Protection. 2015;71.

Available:https://doi.org/10.1016/j.cropro.2015.01.026

Matthews G. The importance of scouting in cotton IPM. Crop Protection. 1996;15(4): 369-374.

Available:https://doi.org/10.1016/0261-2194(95)00145-X

Shamshiri RR, Kalantari F, Ting KC, Thorp KR, Hameed IA, Weltzien C, et al. Advances in greenhouse automation and controlled environment agriculture: A transition to plant factories and urban agriculture. Int J Agric and Biol Eng. 2018;11(1):1–22.

Available:https://doi.org/10.25165/j.ijabe.20181101.3210

Shamshiri RR, Weltzien C, Hameed IA, Yule IJ, Grift TE, Balasundram SK, Chowdhary G. Research and development in agricultural robotics: A perspective of digital farming. Int J Agric and Biol Eng. 2018;11(4):1-14. DOI: 10.25165/j.ijabe.20181104.4278

Meropy. With Senti V, keep an eye on your crops; 2023.

Available:https://meropy.com/en/robot.html#:~:text=SentiV%20is%20a%20scouting%20robot,are%20talking%20about%20near%20sensing

Schmitz A, Badgujar C, Mansur H, Flippo D, McCornack B, Sharda A. Design of a reconfigurable crop scouting vehicle for row crop navigation: A proof-of-concept study. Sensors. 2022;22(16):6203. Available:https://doi.org/10.3390/s22166203

Mishra S. Emerging technologies—principles and applications in precision agriculture. In: 3, G.P.O., Raval MS, Adinarayana J, Chaudhary S. (eds) Data Science in Agriculture and Natural Resource Management. Studies in Big Data. Springer, Singapore. 2022;96.

Available:https://doi.org/10.1007/978-981-16-5847-1_2

Oladele Junior Adeyeye, Ibrahim Akanbi. A review of data-driven decision making in engineering management. Engineering Science and Technology Journal. 2024;5(4):1303-1324.

Available:https://doi.org/10.51594/estj.v5i4.1028

Onesi-Ozigagun O, Ololade YJ, Eyo-Udo NL, Ogundipe DO. Data-driven decision making: Shaping the future of business efficiency and customer engagement. International Journal of Multidisciplinary Research Updates. 2024;7(2):19-29. Available:https://doi.org/10.53430/ijmru.2024.7.2.0031

Vashishth TK, Sharma V, Kumar B. Artificial intelligence (AI)-integrated biosensors and bioelectronics for agriculture. In Khang A. (Ed.), Agriculture and Aquaculture Applications of Biosensors and Bioelectronics. IGI Global. 2024;158-183. Available:https://doi.org/10.4018/979-8-3693-2069-3.ch008

Shah T. Data-driven decision-making: Leveraging analytics for product management. International Journal of Advanced Research in Science, Communication and Technology (IJARSCT). 2023;3(2). DOI: 10.48175/IJARSCT-14271

Lita, Visan DA, Gheorghita Mazare A, Ionescu LM, Lita AI. Automation module for precision irrigation systems. IEEE 26th International Symposium for Design and Technology in Electronic Packaging (SIITME), Pitesti, Romania. 2020;136-139. DOI: 10.1109/SIITME50350.2020.9292300

Patel D, Gandhi MHS, Darji AD. Design of an autonomous agriculture robot for real time weed detection using CNN. AVES 2021 conference; 2022. Available:https://doi.org/10.48550/arxiv.2211.12077

Patel D, Gandhi M, Shankaranarayanan H, Darji AD. Design of an Autonomous Agriculture Robot for Real-Time Weed Detection Using CNN. In: Darji AD, Joshi D, Joshi A, Sheriff R. (eds) Advances in VLSI and Embedded Systems. Lecture Notes in Electrical Engineering,. Springer, Singapore. 2023;962. Available:https://doi.org/10.1007/978-981-19-6780-1_13

Issa AA, Majed S, Ameer SA, Al-Jawahry HM. IoT and AI in livestock management: A game changer for farmers. International Conference on Environmental Development Using Computer Science (ICECS’24). E3S Web of Conferences. 2024;491:8. Available:https://doi.org/10.1051/e3sconf/202449102015

Shahrooz M, Talaeizadeh A, Alasty A. Agricultural spraying drones: Advantages and disadvantages. Virtual Symposium in Plant Omics Sciences (OMICAS), Bogotá, Colombia. 2020;1-5.

DOI:10.1109/OMICAS52284.2020.9535527

Adebayo RA, Obiuto NC, Festus-Ikhuoria IC, Olajiga OK. Robotics in manufacturing: A review of advances in automation and workforce implications. International Journal of Advanced Multidisciplinary Research and Studies. 2024;4(2):632-638. Available:https://doi.org/10.62225/2583049X.2024.4.2.2549

Christensen H, Gini M, Jenkins OC, Yanco H. Robotics enabling the workforce. ARXIV preprint arXiv:2012.09309; 2020.

Azzaretti C, Schimelpfenig G. Perspective: Benchmarking opportunities can contribute to circular food systems in controlled environment agriculture. American Society of Agricultural and Biological Engineers. 2022;535-538. DOI: 10.13031/aea.14888

Garcia A, Griffith M, Buss G, Yang X, Griffis J, Bauer S, Singh A. Controlled Environment Agriculture and Its Ability to Mitigate Food Insecurity; 2023.

Rajendiran G, Rethnaraj J. Future of smart farming techniques: significance of urban vertical farming systems integrated with IoT and Machine Learning. Open Access Journal of Agricultural Research. 2023;8(3). DOI: 10.23880/oajar-16000308

Billingsley J. (Ed.). Robotics and automation for improving agriculture (2nd ed.). Burleigh Dodds Science Publishing; 2020. Available:https://doi.org/10.1201/9780429266737

Fantin Irudaya Raj E, Francy Irudaya Rani E, Sweetline Jenita C, Winstor Jebakumar VS. Agricultural Automation Using Cloud Robotics. In Gatti R, Singh C. (Eds.), Shaping the Future of Automation with Cloud-Enhanced Robotics. IGI Global. 2024;380-393.

Available:https://doi.org/10.4018/979-8-3693-1914-7.ch021

Biswas N, Aslekar A. Improving agricultural productivity: Use of automation and robotics. International Conference on Decision Aid Sciences and Applications (DASA), Chiangrai, Thailand. 2022;1098-1104. DOI: 10.1109/DASA54658.2022.9765207

Dhanta R, Mwale M. Transforming Agriculture with Modern AI: Harnessing Artificial Intelligence to Revolutionize Farming. In Sharma D., Bhardwaj B, Dhiman M. (Eds.), Leveraging AI and Emotional Intelligence in Contemporary Business Organizations . IGI Global. 2024; 350-370.

Available:https://doi.org/10.4018/979-8-3693-1902-4.ch021

Solona O, Skoromna O, Ohorodnichuk H. Application of digital technologies in the field of animal husbandry. Scientific Journals of Vinnitsa National Agrarian University. 2023;123(4).

DOI: 10.37128/2520-6168-2023-4-5

Robotics in agriculture: Advanced technologies in livestock farming and crop cultivationYury Shvets, Dmitry Morkovkin, Maria Basova, Alexander Yashchenko and Tatyana PetrusevichE3S Web Conf. 2024;480:03024. Available:https://doi.org/10.1051/e3sconf/202448003024

Aravind KR, Raja P, Pérez-Ruiz M. Task-based agricultural mobile robots in arable farming: A review. Spanish Journal of Agricultural Research. 2017;15(1):e02R01.

Available:https://doi.org/10.5424/sjar/2017151-9573

Barua R, Bhowmik S, Banerjee A, Banerjee D. The emerging advancement of robotics in the modern agriculture field. In A. Khang (Ed.), Agriculture and Aquaculture Applications of Biosensors and Bioelectronics. IGI Global. 2024;256-268. Available:https://doi.org/10.4018/979-8-3693-2069-3.ch013

Sparrow R, Howard M. Robots in agriculture: Prospects, impacts, ethics, and policy. Precision Agric. 2021;22:818–833. Available:https://doi.org/10.1007/s11119-020-09757-9

George Adamides, Christos Katsanos, Georgios Christou, Michalis Xenos, Giorgos Papadavid, Thanasis Hadzilacos. User interface considerations for telerobotics: The case of an agricultural robot sprayer. Proc. SPIE 9229, Second International Conference on Remote Sensing and Geoinformation of the Environment (RSCy2014), 92291W; 2014.

Available:https://doi.org/10.1117/12.2068318

Sharma A, Raghavan M, Shi Z, Bang NTH. Utilization of protected cultivation for crop production and preservation in India. Environment Conservation Journal. 2021;22(1&2):13–17.

Available:https://doi.org/10.36953/ECJ.2021.221203

Bazargani K, Deemyad T. Automation’s impact on agriculture: Opportunities, challenges, and economic effects. Robotics. 2024;13:33. Available:https://doi.org/10.3390/robotics13020033

Cheng C, Fu J, Su H, Ren L. Recent advancements in agriculture robots: Benefits and challenges. Machines. 2023; 11(1):48. DOI: 10.3390/machines11010048

Oetomo D, Billingsley J. Editorial: Special issue on agricultural robotics. Intel Serv Robotics. 2010;3:207–208. Available:https://doi.org/10.1007/s11370-010-0079-y

Fasiolo DT, Scalera L, Maset E, Gasparetto A. Experimental Evaluation and Comparison of LiDAR SLAM Algorithms for Mobile Robotics. In Niola V, Gasparetto A, Quaglia G, Carbone G. (Ed.), The International Conference of IFToMM ITALY. Springer, Cham. 2022;122:795-803.

Available:https://doi.org/10.1007/978-3-031-10776-4_91

Gupta Y, Kumar A. Robotic Farming- The Upcoming Revolution In The Agriculture Sector; 2022. Available:https://startuptalky.com/robotic-farming/

Amir Ghalazman E, Gautham P Das, Iain Gould, Payam Zarafshan, Vishnu Rajendran S, James Heselden, Amir Badiee, Isobel Wright, Simon Pearson, Chapter 10 - Applications of robotic and solar energy in precision agriculture and smart farming,Editor(s): Shiva Gorjian, Pietro Elia Campana, Solar Energy Advancements in Agriculture and Food Production Systems,Academic Press. 2022;351-390.ISBN 9780323898669

Available:https://doi.org/10.1016/B978-0-323-89866-9.00011-0.

Paper number 131593595, 2013 Kansas City, Missouri; 2013. DOI: 10.13031/aim.20131593595) @2013

Han D. Big Data Analytics, Data Science, ML&AI for Connected, Data-driven Precision Agriculture and Smart Farming Systems: Challenges and Future Directions. CPS-IoT Week '23: Proceedings of Cyber-Physical Systems and Internet of Things Week 2023. New York, NY, USA: Association for Computing Machinery. 2023;378-384. DOI: 10.1145/3576914.3588337

Kayastha S, Behera A, Sahoo JP, Mahapatra M. Growing green: Sustainable agriculture meets precision farming: A review. Bhartiya Krishi Anusandhan Patrika. 2024;38(4):349-355.

DOI: 10.18805/BKAP697

Nikam DA, Bujare HM, Gavali SP, Patil AM, Konuri PT, Desai SB. Smart agriculture automation system using ML. International Journal for Research in Applied Science and Engineering Technology (IJRASET). 2024;12(4). Available:https://doi.org/10.22214/ijraset.2024.59848

Daraojimba DO, Adewusi AO, Asuzu OF, Olorunsogo T, Iwuanyanwu C, Adaga E. AI in precision agriculture: A review of technologies for sustainable farming practices. World Journal of Advanced Research and Reviews. 2024;21(1):2276–2285. Available:https://doi.org/10.30574/wjarr.2024.21.1.0314

Kumar N, Singh A, Das D, Srivastava D, Talari VSR, Kurukwar AD. Impact of IoT based autonomous farming equipment on crop culture and management in the agricultural sector. International Conference on Edge Computing and Applications (ICECAA), Tamilnadu, India. 2022;669-675. DOI: 10.1109/ICECAA55415.2022.9936243

Valle SS, Kienzle J. AGRICULTURE 4.0 Agricultural robotics and automated equipment for sustainable crop production (Vol. 24). Rome, FAO: Integrated Crop Management; 2020.

Available:https://www.fao.org/3/cb2186en/cb2186en.pdf

Fountas S, Malounas I, Athanasakos L, Avgoustakis I, Espejo-Garcia B. AI-Assisted Vision for Agricultural Robots. AgriEngineering. 2022;4(3):674-694. Available:https://doi.org/10.3390/agriengineering4030043

Adesiyan JS, Raffington AE. Agritech revolution: Next-generation supply chain in America’s agriculture. International Journal of Environment and Climate Change. 2024;14(2):254–272. Available:https://doi.org/10.9734/ijecc/2024/v14i23943

Raikov, Abrosimov V. Artificial intelligence and robots in agriculture. 15th International Conference Management of large-scale system development (MLSD), Moscow, Russian Federation. 2022;1-5. DOI: 10.1109/MLSD55143.2022.9934170

Soussi A, Zero E, Sacile R, Trinchero D, Fossa M. Smart sensors and smart data for precision agriculture: A review. Sensors. 2024;24(8):2647. Available:https://doi.org/10.3390/s24082647

Applied Engineering in Agriculture. 2022;38(3): 535-538. DOI: 10.13031/aea.14888

Ting KC, Lin T, Davidson PC. Integrated urban controlled environment agriculture systems. In: Kozai T, Fujiwara K, Runkle E. (eds) LED Lighting for Urban Agriculture. Springer, Singapore; 2016.

Available:https://doi.org/10.1007/978-981-10-1848-0_2

Arndt G. Technology Transfer and Agricultural Robotics, CIRP Annals. 1985;34(1):381-386. ISSN 0007-

Saxena NN. Agriculture sector improvement implementing IoT. International Journal of Innovative Research in Computer Science and Technology (IJIRCST). 2021;9(6):26-30.

DOI: https://doi.org/10.55524/ijircst.2021.9.6.6

Kumari M, Kasib M, Singh P, Khan A, Singh S, Singh B. Smart irrigation system using IOT. International Journal for Research in Applied Science and Engineering Technology (IJRASET). 2023;11(4). Available:https://doi.org/10.22214/ijraset.2023.51012

Kale S. The Future of Food Production: How Indoor Farming Robots Are Changing the Way We Eat; 2023. Available:https://www.linkedin.com/pulse/future-food-production-how-indoor-farming-robots-changing-snehal-kale/

Zimmermann N. Can robots kill glyphosate?; 2018. Available:https://www.dw.com/en/could-agricultural-robots-replace-glyphosate/a-43964752

Kushwaha HL. Robotic and mechatronic application in agriculture. RASSA Journal of Science for Society. 2019;1(3):89-97. Available:https://www.rassa.org.in/

Jinguji H, Uéda T. Can the use of more selective insecticides promote the conservation of Sympetrum frequens in Japanese rice paddy fields (Odonata: Libellulidae)? Odonatologica. 2015;44:63-80. Available:https://www.researchgate.net/publication/281704745_Can_the_use_of_more_selective_insecticides_promote_the_conservation_of_Sympetrum_frequens_in_Japanese_rice_paddy_fields_Odonata_Libellulidae

Hayward A, Farmer M. Meet Swag Bot, the Robot Cowboy That Can Herd and Monitor Cattle On Its Own. Retrieved from smithsonianmag; 2016. Available:https://www.smithsonianmag.com/innovation/meet-swagbot-robot-cowboy-can-herd-and-monitor-cattle-its-own-180959913/

Ollis M, Stentz A. Vision-based perception for an automated harvester. Proceedings of the 1997 IEEE/RSJ International Conference on Intelligent Robot and Systems. Innovative Robotics for Real-World Applications. IROS '97. 3, p. 1838. Grenoble, France: IEEE; 1997.

DOI: 10.1109/IROS.1997.656612

Shiva Gorjian, Saeid Minaei, Ladan MalehMirchegini, Max Trommsdorff, Redmond R. Shamshiri,Chapter 7 - Applications of solar PV systems in agricultural automation and robotics,Editor(s): Shiva Gorjian, Ashish Shukla,Photovoltaic Solar Energy Conversion, Academic Press. 2020;191-235. ISBN 9780128196106. Available:https://doi.org/10.1016/B978-0-12-819610-6.00007-7.

Visconti P, Fazio RD, Velázquez R, Del-Valle-Soto C, Giannoccaro NI. Development of sensors-based agri-food traceability system remotely managed by a software platform for optimized farm management. Sensors. 2020;20:3632. DOI: 10.3390/s20133632

Wikipedia. agricultural robot. Retrieved from Wikipedia; 2024.

Available:https://en.wikipedia.org/wiki/Agricultural_robot

University P. Forestry and Natural Resources. Retrieved from purdue; 2017.

Available:https://www.purdue.edu/fnr/extension/a-new-drone-supports-pollinator-efforts/

Simon Birrell, et al. A field tested robotic harvesting system for iceberg lettuce. Journal of Field Robotics; 2019. DOI: 10.1002/rob.21888

Ban Y, Lyu K, Ba S, Wen J, Kang F, Li W. Monkeybot: A climbing and pruning robot for standing trees. Actuators. 2022;11(10). DOI: 10.3390/act11100287

Cambridge UO. Robot uses machine learning to harvest lettuce; 2019.

Available:https://www.cam.ac.uk/research/news/robot-uses-machine-learning-to-harvest-lettuce

GR, JR. Future of smart farming techniques: Significance of urban vertical farming systems integrated with IOT and machine learning. Open Access Journal of Agricultural Research. 2023;8(3). DOI: 10.23880/oajar-16000308

Gossett S. Software engineering perspectives; 2024. Available:https://builtin.com/robotics/farming-agricultural-robots

Asscheman E. Carbon Robotics bags $30m for weed control with autonomous laser bots; 2023. Available:https://www.futurefarming.com/tech-in-focus/field-robots/carbon-robotics-bags-30m-for-weed-control-with-autonomous-laser-bots/

Evans S. Scythe Robotics Raises $42M for Autonomous, Electric Lawn Mower; 2023.

Available:https://www.iotworldtoday.com/robotics/scythe-robotics-raises-42m-for-autonomous-electric-lawn-mower#close-modal

Haibo L, Shuliang D, Zunmin L, Chuijie Y. Study and experiment on a wheat precision seeding robot. (Y. Li, Ed.) Journal of Robotics, 2015(Article ID 696301), 9. 2015. DOI:10.1155/2015/696301

Arndt G. Technology Transfer and Agricultural Robotics. CIRP Annals. 1985;34(1):381-386. ISSN 0007-8506. Available:https://doi.org/10.1016/S0007-8506(07)61794-6.

Gnanabai BM, Meena Rani S. Resisting modern agricultural practices and urge to practice sustainable agriculture and food security in Barbara Kingsolver’s prodigal summer. Journal of Advanced Zoology. 2023;44(3):1207–1214. Available:https://doi.org/10.17762/jaz.v44i3.1385

Tangkesalu D, Pedro JC, Tooy D, Judijanto L, Saprudin S. Precision agriculture: Integrating technology for enhanced efficiency and sustainability in crop management. Global International Journal of Innovative Research. 2023;1(3):213–219. Available:https://doi.org/10.59613/global.v1i3.37

Gobor Z. Mechatronic system for mechanical weed control of the intra-row area in row crops. Künstl Intell. 2013;27:379–383. Available:https://doi.org/10.1007/s13218-013-0265-0

Pavkin DY, Shilin DV, Nikitin EA, Kiryushin IA. Designing and simulating the control process of a feed pusher robot used on a dairy farm. Applied Sciences. 2021;11(22):10665.

DOI: 10.3390/app112210665

Mohanty LK, Singh NK, Raj P, Prakash A, Tiwari AK, Singh V, Sachan P. Nurturing crops, enhancing soil health, and sustaining agricultural prosperity worldwide through agronomy. Journal of Experimental Agriculture International. 2024;46(2):46–67.

Available:chttps://doi.org/10.9734/jeai/2024/v46i22308

Bogala Mallikharjuna Reddy; Agriculture Robotics, Data Science for Agricultural Innovation and Productivity. 2024;1:48. Available:https://doi.org/10.2174/9789815196177124010007

Kootstra G, Bender A, Perez T, Van Henten EJ. Robotics in Agriculture. In: Ang M, Khatib O, Siciliano B. (eds) Encyclopedia of Robotics. Springer, Berlin, Heidelberg; 2020. Available:https://doi.org/10.1007/978-3-642-41610-1_43-1

Jones EB. The gendering of the postwar agricultural labor shortage in Saxony, 1918–1925. Central European History. 1999;32(3):311–329. DOI: 10.1017/S0008938900021154

Hyangmi Y. Comparative analysis of factors affecting labor force employment and demand between elderly and non-elderly farmers. Korean Journal of Agricultural Management and Policy. 2019;46(1):40-62. Available:https://doi.org/10.30805/kjamp.2019.46.1.40

Guo, Guancheng, Wen, Qiyu, Zhu, Jingjuan, The Impact of Aging Agricultural Labor Population on Farmland Output: From the Perspective of Farmer Preferences, Mathematical Problems in Engineering. 2015;730618. Available:https://doi.org/10.1155/2015/730618

Ngadi N, Zaelany AA, Latifa A, Harfina D, Asiati D, Setiawan B, Ibnu F, Triyono T, Rajagukguk Z. Challenge of Agriculture Development in Indonesia: Rural Youth Mobility and Aging Workers in Agriculture Sector. Sustainability. 2023; 15(2):922. Available:https://doi.org/10.3390/su15020922

Liu J, Fang Y, Wang G, Liu B, Wang R. The aging of farmers and its challenges for labor-intensive agriculture in China: A perspective on farmland transfer plans for farmers' retirement. Journal of Rural Studies. 2023;100:103013. Available:https://doi.org/10.1016/j.jrurstud.2023.103013

Conelly WT. Population pressure, labor availability, and agricultural disintensification: The decline of farming on Rusinga Island, Kenya. Hum Ecol. 1994;22:145–170.

Available:https://doi.org/10.1007/BF02169037

Adda, Jerome, Dustmann, Christian, Meghir, Costas, Robin, Jean-Marc. Career Progression, Economic Downturns, and Skills. SSRN Electronic Journal; 2013. DOI: 10.2139/ssrn.2220729.

Joshi P. Management practices of rural enterprises versus markets of Urban Areas. Turkish Online Journal of Qualitative Inquiry. 2019;10(2). Available:https://doi.org/10.52783/tojqi.v10i2.9927

Gorjian S, Ebadi H, Trommsdorff M, Sharon H, Demant M, Schindele S. The advent of modern solar-powered electric agricultural machinery: A solution for sustainable farm operations. Journal of Cleaner Production. 2021;292:12603. Available:https://doi.org/10.1016/j.jclepro.2021.126030

Malavazi FB, Guyonneau R, Fasquel JB, Lagrange S, Mercier F. LiDAR-only based navigation algorithm for an autonomous agricultural robot. Computers and Electronics in Agriculture. 2018;154:71-79. Available:https://doi.org/10.1016/j.compag.2018.08.034

Łukowska A, Tomaszuk P, Dzierżek K, Magnuszewski Ł. Soil sampling mobile platform for Agriculture 4.0. 2019 20th International Carpathian Control Conference (ICCC), Krakow-Wieliczka, Poland. 2019;1-4. DOI: 10.1109/CarpathianCC.2019.8765937

Liao X, Hu X, Jiang M, Long L, Liu Y. Design of sleeve type fruit picking device. In: Xhafa F, Patnaik S, Tavana M. (eds) Advances in Intelligent Systems and Interactive Applications. IISA 2019. Advances in Intelligent Systems and Computing, vol 1084. Springer. Cham; 2020.

Available:https://doi.org/10.1007/978-3-030-34387-3_61

Baeten J, Donné K, Boedrij S, Beckers W, Claesen E. Autonomous fruit picking machine: A robotic apple harvester. In: Laugier C, Siegwart R. (eds) Field and Service Robotics. Springer Tracts in Advanced Robotics. Springer, Berlin, Heidelberg. 2008;42.

Available:https://doi.org/10.1007/978-3-540-75404-6_51

Zhang J, Kang N, Qu Q, et al. Automatic fruit picking technology: A comprehensive review of research advances. Artif Intell Rev. 2024;57:54. Available:https://doi.org/10.1007/s10462-023-10674-2

Lemieszewski Ł, Prochacki S. Decision support for autonomous drone flight based on satellite navigation signal. Procedia Computer Science. 2023;225:1691-1698.

Available:https://doi.org/10.1016/j.procs.2023.10.158

Abouzahir S, Sadik M, Sabir E. lightweight computer vision system for automated weed mapping. IEEE 12th Annual Computing and Communication Workshop and Conference (CCWC), Las Vegas, NV, USA. 2022;0372-0376. DOI: 10.1109/CCWC54503.2022.9720800

Andújar D, Ribeiro Á, Fernández-Quintanilla C, Dorado J. Accuracy and feasibility of optoelectronic sensors for weed mapping in wide row crops. Sensors. 2011;11(3):2304-2318.

Available:https://doi.org/10.3390/s110302304

Pascuzzi S, Anifantis AS, Santoro F. The concept of a compact profile agricultural tractor suitable for use on specialised tree crops. Agriculture. 2020; 10(4):123.

Available:https://doi.org/10.3390/agriculture10040123

Straffelini E, Tarolli P. Viticulture and Cultural Landscapes: Remote sensing and Earth surface processes modelling to promote sustainable agricultural practices. IEEE Workshop on Metrology for Agriculture and Forestry (MetroAgriFor), Perugia, Italy. 2022;292-297.

DOI:10.1109/MetroAgriFor55389.2022.9964716

Vogt HH, Albiero D, Schmuelling B. Electric tractor propelled by renewable energy for small-scale family farming. Thirteenth International Conference on Ecological Vehicles and Renewable Energies (EVER), Monte Carlo, Monaco. 2018;1-4. DOI: 10.1109/EVER.2018.8362344

Revolutionizing Precision Agriculture: A Comprehensive Review of Innovative Technologies and Application in Digital Farming - Bhavya Venugopal, Emerson Elgin Fernandez, Karthik Shekhar, Krishnanunni V S, Lekshmi P Govind – IJFMR. 2024;6(1). DOI: 10.36948/ijfmr.2024.v06i01.12825

Millard AG, Ravikanna R, Groß R, Chesmore D. Towards a swarm robotic system for autonomous cereal harvesting. In: Althoefer K, Konstantinova J, Zhang K. (eds) Towards Autonomous Robotic Systems. TAROS 2019. Lecture Notes in Computer Science(), vol 11650. Springer, Cham; 2019. Available:https://doi.org/10.1007/978-3-030-25332-5_40

EGA, Das GP, Gould I, Zarafshan PSVR, Heselden J, Pearson S. Chapter 10 - Applications of robotic and solar energy in precision agriculture and smart farming. (S. G. Campana, Ed.). 2022;351-390. Available:https://doi.org/10.1016/B978-0-323-89866-9.00011-0

Narsale, Swapnil Ananda, Patekar Prakash, Hari Prasad Mohale, Ravi Baraiya, Samad Sheikh, Parmar Bindiya Kirtikumar, Chovatia Ravikumar Mansukhbhai, Rishikesh Venkatrao Kadam, and Indulata Tekam. Precision aquaculture: A way forward for sustainable agriculture. Journal of Experimental Agriculture International. 2024;46(5):83-97.

Available:https://doi.org/10.9734/jeai/2024/v46i52360.

Takher, Sitanshu. Revolutionizing agriculture libraries in India: A comprehensive study on implementing near field communication (NFC) technology for enhanced access and knowledge sharing. Asian Journal of Agricultural Extension, Economics and Sociology. 2024;42(1):128-38.

Available:https://doi.org/10.9734/ajaees/2024/v42i12355.

Edan Y, Han S, Kondo N. Automation in agriculture. Springer handbook of automation. 2009;1095-128.

Jha K, Doshi A, Patel P, Shah M. A comprehensive review on automation in agriculture using artificial intelligence. Artificial Intelligence in Agriculture. 2019;2: 1-2.